Volume and activity quantitation in SPECT

  • Chapter
Cardiovascular Nuclear Medicine and MRI

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 128))

  • 79 Accesses

Summary

This chapter reviews some of the factors which influence the quantitation of volume and activity with SPECT imaging. For volume quantitation we first compare seven methods of volume quantitation, and then illustrate the bias caused to the measurement of volume by the blurring of the objects inherent in imaging. For activity quantitation, we discuss the influence of attenuation, scatter, and spatial resolution on the accuracy of activity estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 49.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Strauss H. W, Zaret B. L, Hurley P. J, Natavajan T. K, Pitt B. A scintiphotographic method for measuring left ventricular ejection fraction in man without cardiac catheterization. Am J Cardiol 1971;28:575–80.

    Article  PubMed  CAS  Google Scholar 

  2. Seldin D. W, Easer P. D, Nichols A. B, Ratner S. J, Alderson P. O. Left ventricular volumedetermined from scintigraphy and digital angiography by a semi-automated geometric method. Radiology 1983;149:809–13.

    PubMed  CAS  Google Scholar 

  3. Parker J. A, Seeker-Walker R, Hili R, Siegel B. A, Potchen E. J. A new technique for the calculation of left ventricular ejection fraction. J Nucl Med 1972;13:649–51.

    PubMed  CAS  Google Scholar 

  4. Reiber J. H, Lie S. P, Simoons M. L, et al. Clinical validation of fully automated computation of ejection fraction from gated equilibrium blood-pool seintigrams. J Nucl Med 1983;24:1099–107.

    PubMed  CAS  Google Scholar 

  5. Dehmer G. J, Lewis S. E, Hillis L. D, et al. Nongeometric determination of left ventricular volumes from equilibrium blood pool scans. Am J Cardiol 1980;45:293–300.

    Article  PubMed  CAS  Google Scholar 

  6. Links J. M, Becker L. C, Shindledecker J. G, et al. Measurement of absolute left ventricular volume from gated blood pool studies. Circulation 1982;65:82–91.

    Article  PubMed  CAS  Google Scholar 

  7. Massardo T, Gal R. A, Grenier R. P, Schmidt D. H, Port S. C. Left ventricular volume calculation using a count-based ratio method applied to multigated radionuclide angiography. (published erratum appears in J Nucl Med 1990;31:1449). J Nucl Med 1990;31:450–6.

    PubMed  CAS  Google Scholar 

  8. Keyes J. W Jr, Brady T. J, Leonard P. F, et al. Calculation of viable and infarcted myocardial mass from thallium-201 tomograms. J Nucl Med 1981;22:339–43.

    PubMed  CAS  Google Scholar 

  9. Lee K. H, Liu H. T, Chin D. C, Siegel M. E, Ballard S. Volume calculation by means of SPECT: analysis of imaging acquisition and processing factors. Radiology 1988;167:259–62.

    PubMed  CAS  Google Scholar 

  10. Tauxe W. N, Soussaline F, Todd-Pokropek A, et al. Determination of organ volume by single-photon emission tomography. J Nucl. Med 1982;23:984–7.

    PubMed  CAS  Google Scholar 

  11. Strauss L. G, Cloris J. H, Frank T, Van Kaick G. Single photon emission computerized tomography (SPECT) for estimates of liver and spleen volume. J Nucl Med 1984;25:81–5.

    PubMed  CAS  Google Scholar 

  12. Mortelmans L, Nuyts J, Van Pamel G, Van den Maegdenbergh V, De Roo M., Suetens P. A new thresholding method for volume determined by SPECT. Eur J Nucl Med 1986;12:284–90.

    Article  PubMed  CAS  Google Scholar 

  13. Mut F., Glickman S., Marciano D., Hawkins R. A. Optimum processing protocols for volume determination of the liver and spleen from SPECT imaging with technetium-99m sulfur colloid. J Nucl Med 1988;29:1768–75.

    PubMed  CAS  Google Scholar 

  14. Kircos L. T, Carey J. E. Jr, Keyes J. W. Jr. Quantitative organ visualization using SPECT. J Nucl Med 1987;28:334–41.

    PubMed  CAS  Google Scholar 

  15. Long D. T., King M. A., Penney B. C. 2D vs 3D edge detection as a basis for volume quantitation in SPECT. In: Ortendahl D. A., Leacer J., editors. Information processing in medical imaging. New York: Wiley-Liss, 1991:457–71.

    Google Scholar 

  16. Caputo G. R., Graham M. M., Brust K. D., Kennedy J. W., Nelp W. B. Measurement of left ventricular volume using single-photon emission computed tomography. Am J Cardiol 1985;56:781–6.

    Article  PubMed  CAS  Google Scholar 

  17. Long D. T., King M. A., Sheehan J. Comparative evaluation of image segmentation methods for volume quantitation in SPECT. Med Phys. In press.

    Google Scholar 

  18. Canny J. A computational approach to edge detection. IEEE Trans Patt Anal Mach Intell 1986;8:679–98.

    Article  CAS  Google Scholar 

  19. Gennert M. A., Gosselin D. R., King M. A., Long D. T. A comparison of 3D methods for volume quantitation in SPECT. Information Processing in Medical Imaging. In press.

    Google Scholar 

  20. King M. A., Long D. T., Brill A. B. SPECT volume quantitation: influence of spatial resolution, source size and shape, and voxel size. Med Phys. In press.

    Google Scholar 

  21. Graham L. S., Neil R. In vivo quantitation of radioactivity using the Anger camera. Radiology 1974;112:441–2.

    PubMed  CAS  Google Scholar 

  22. Wu R. K., Siegel J. A. Absolute quantitation of radioactivity using the buildup factor. Med Phys 1984;11:189–92.

    Article  PubMed  CAS  Google Scholar 

  23. Doherty P, Schwinger R., King M., Gionet M. Distribution and dosimetry of indium-Ill labeled F(ab′2 fragments in humans. In: Schlafke-Stelson A., Wetson E., editors. Fourth international radiopharmaceutical dosimetry symposium: Oak Ridge, Tenessee: Dept of Energy, 1985:464–76.

    Google Scholar 

  24. Jaszczak R. J., Coleman R. E., Whitehead F. R. Physical factors affecting quantitative measurements using camera-based single photon emission computed tomography (SPECT). IEEE Trans Nucl Sci 1981;28:69–80.

    Article  Google Scholar 

  25. Larsson S. A. Gamma camera emission tomography. Development and properties of a multisectional computed tomography system. Acta Radiol Suppl. (Stockh) 1980;363:1–75.

    PubMed  CAS  Google Scholar 

  26. Chang L. T. Method for attenuation correction in radionuclide computed tomography. IEEE Trans Nucl Sci 1978;25:638–43.

    Article  Google Scholar 

  27. Tretiak O., Metz C. The exponential radon transform. SIAM J Appl Math 1980;39:341–54.

    Article  Google Scholar 

  28. Gullberg G. T., Budinger T. F. The use of filtering methods to compensate for constant attenuation in single-photon emission computed tomography. IEEE Trans Biomed Eng 1981;28:142–57.

    Article  PubMed  CAS  Google Scholar 

  29. Tanaka E., Toyama H., Murayama H. Convolutional image reconstruction for quantitative single photon emission computed tomography. Phys Med Biol 1984;29:1489–500.

    Article  PubMed  CAS  Google Scholar 

  30. Bellini S., Piacentini M., Cafforio C., Rocca F. Compensation of tissue absorption in emission tomography. IEEE Trans Acou Speech Signal Process 1979;27:213–8.

    Article  Google Scholar 

  31. Hawkins W. G., Leichner P. K., Yang N. The circular harmonic transform for SPECT reconstruction and boundary conditions on the Fourier transform of the sinogram. IEEE Trans Med Imaging 1988;7:135–48.

    Article  PubMed  CAS  Google Scholar 

  32. Glick S. J., Hawkins W. G., King M. A., et al. Choice of intrinsic attenuation correction method and the three-dimensional transfer function of SPECT. Med Phys. In press.

    Google Scholar 

  33. Edholm P. R., Lewitt R. M., Lindholm B. Novel properties of the Fourier decomposition of the sinogram. Proc SPIE 1986;671:8–18.

    Article  Google Scholar 

  34. Hawkins W. G., Yang N, Leichner P. K. Validation of the circular harmonic transform (CHT) algorithm for quantitative SPECT. J Nucl Med 1991;32:141–50.

    PubMed  CAS  Google Scholar 

  35. Malko J. A., Van Heertum R. L., Gullberg G. T., Kowalsky W. P. SPECT liver imaging using an iterative attenuation correction algorithm and an external flood source. J Nucl Med 1986;27:701–5.

    PubMed  CAS  Google Scholar 

  36. Bailey D. L., Hutton B. F., Walker P. J. Improved SPECT using simultaneous emission and transmission tomography. J Nucl Med 1987;28:844–51.

    PubMed  CAS  Google Scholar 

  37. Tan P., Bailey D. L., Hutton B. F., et al. A moving line source for simultaneous transmission/emission SPECT (abstract). J Nucl Med 1989;30:964.

    Google Scholar 

  38. Manglos S. H., Bassano D. A., Duxbury C. E., Capone R. B. Attenuation maps for SPECT determined using cone beam transmission computed tomography. IEEE Trans Nucl Sci 1990;37:600–8.

    Article  Google Scholar 

  39. Fleming J. S. A technique for using CT images in attenuation correction and quantification in SPECT. Nucl Med Commun 1989;10:83–97.

    Article  PubMed  CAS  Google Scholar 

  40. Hosoba M, Wani H., Toyama H., Murata H., Tanaka E. Automated body contour detection in SPECT: effects on quantitative studies (see comments). J Nucl Med 1986;27:1184–91. Comment in: J Nucl Med 1989;30:266-7.

    PubMed  CAS  Google Scholar 

  41. Manglos S. H., Jaszczak R. J., Floyd C. E., Hahn L. J., Greer K. L., Coleman R. E. Nonisotropic attenuation in SPECT: phantom tests of quantitative effects and compensation techniques. J Nucl Med 1987;28:1584–91.

    PubMed  CAS  Google Scholar 

  42. Ljungberg M., Strand S. E. Attenuation correction in SPECT based on transmission studies and Monte Carlo simulations of build-up functions. J Nucl Med 1990;31:493–500.

    PubMed  CAS  Google Scholar 

  43. Tsui B. M, Gullberg G. T., Edgerton E. R., et al. Correction of nonuniform attenuation in cardiac SPECT imaging. J Nucl Med 1989;30:497–507.

    PubMed  CAS  Google Scholar 

  44. Jaszczak R. J., Floyd C. E., Coleman RE. Scatter compensation techniques for SPECT. IEEE Trans Nucl Sci 1985;32:786–93.

    Article  Google Scholar 

  45. Axelsson B., Msaki P., Israelsson A. Subtraction of Compton-scattered photons in single photon emission computerized tomography. J Nucl Med 1984;25:490–4.

    PubMed  CAS  Google Scholar 

  46. Floyd C. E. Jr, Jaszczak R. J., Greer K. L., Coleman R. E. Deconvolution of Compton scatter in SPECT. J Nucl Med 1985;26:403–8.

    PubMed  Google Scholar 

  47. Msaki P., Axelsson B., Dahl C. M., Larsson S. A. Generalized scatter correction method in SPECT using point scatter distribution functions. J Nucl Med 1987;28:1861–9.

    PubMed  CAS  Google Scholar 

  48. Gilardi M. C., Bettinardi V., Todd-Pokropek A., Milanesi L, Fazio F. Assessment and comparison of three scatter correction techniques in single photon emission computed tomography. J Nucl Med 1988;29:1971–9.

    PubMed  CAS  Google Scholar 

  49. Frey E. C, Tsui B. M. Parameterization of the scatter response function in SPECT imaging using Monte Carlo simulation. IEEE Trans Nucl Sci 1990;37:1308–15.

    Article  CAS  Google Scholar 

  50. Ljungberg M., Msaki P., Strand S. E. Comparison of dual window and convolution scatter correction techniques using the Monte-Carlo method. Phys Med Biol 1990;35:1099–110.

    Article  Google Scholar 

  51. Ljungberg M., Strand S. E. Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions. J Nucl Med 1990;31:1560–7.

    PubMed  CAS  Google Scholar 

  52. Jaszczak R. J., Greer K. L., Floyd C. E. Jr, Harris C. C, Colenian R. E. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984;25:893–900.

    PubMed  CAS  Google Scholar 

  53. Koral K. F., Swailem F. M., Buchbinder S, et al. SPECT dual-energy window Compton correction: scatter multiplier required for quantitation. J Nucl Med 1990;31:90–8.

    PubMed  CAS  Google Scholar 

  54. Gagnon D., Todd-Pokropek A., Arsenault A., Dupras G. Introduction to holospectral imaging in nuclear medicine for scatter subtraction. IEEE Trans Med Imaging 1989;8:245–50.

    Article  PubMed  CAS  Google Scholar 

  55. Koral K. F, Wang X. Q., Rogers W. L., Clinthorne N. H, Wang X. H. SPECT Compton-scattering correction by analysis of energy spectra. J Nucl Med 1988;29:195–202.

    PubMed  CAS  Google Scholar 

  56. Rosenthal M. S., Henry U. Evaluation and comparison of two scatter correction techniques(abstract). J Nucl Med 1990;31:873.

    Google Scholar 

  57. Logan K. W., McFarland W. D. Single photon scatter compensation by photopeak energy distribution analysis. IEEE Trans Nucl Sci. In press.

    Google Scholar 

  58. King M. A., Ljungberg M., Hademenos G., Glick S. J. A dual photopeak window method forscatter correction (abstract). J Nucl Med. In press.

    Google Scholar 

  59. Kessler R. M., Ellis J. R. Jr, Eden M. Analysis of emission tomographic scan data: limitations imposed by resolution and background. J Comput Assist Tomogr 1984;8:514–22.

    Article  PubMed  CAS  Google Scholar 

  60. Galt J. R, Garcia E. V., Robbins W. L. Effects of myocardial wall thickness on SPECT quantification. IEEE Trans Med Imaging 1990;9:144–50.

    Article  PubMed  CAS  Google Scholar 

  61. Maniawski P. J, Morgan H. T., Wackers F. J. Orbit related variation in spatial resolution as a source of artifactual defects in TI-201 SPECT (abstract). J Nucl Med 1990;31:718.

    Google Scholar 

  62. King M. A., Coleman M, Penney B. C., Glick S. J. Activity quantitation in SPECT: A study of pre-reconstruction Metz filtering and use of the scatter degradation factor. Med Phys. In press.

    Google Scholar 

  63. Huesman R. H. A new fast algorithm for the evaluation of regions of interest and statistical uncertainty in computed tomography. Phys Med Biol 1984;29:543–52.

    Article  PubMed  CAS  Google Scholar 

  64. Carson R. E. A maximum likelihood method for region-of-interest evaluation in emission tomography. J Comput Assist Tomogr 1986;10:654–63.

    Google Scholar 

  65. Muller S. P., Kijewski M. F., Moore S. C., Holman B. L. Maximum-likelihood estimation: a mathematical model for quantitation in nuclear medicine. J Nucl Med 1990;31:1693–701.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

King, M.A., Long, D.T. (1992). Volume and activity quantitation in SPECT. In: Reiber, J.H.C., Van Der Wall, E.E. (eds) Cardiovascular Nuclear Medicine and MRI. Developments in Cardiovascular Medicine, vol 128. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2666-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2666-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5179-8

  • Online ISBN: 978-94-011-2666-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation