Carotenoid biosynthesis and manipulation

  • Chapter
Biosynthesis and Manipulation of Plant Products

Part of the book series: Plant Biotechnology Series ((PBS))

Abstract

The carotenoids are the most widespread group of pigments in nature, with an estimated yield of some 100 million tons annually. They are present in all photosynthetic organisms, and are responsible for most of the yellow to red colours of most fruits and flowers. The characteristic colours of many birds, insects and marine invertebrates are also due to the presence of carotenoids which have originated in the diet. Commercially, carotenoids are used as food colorants, nutritional supplements (because of their pro-vitamin A activity) and in the treatment of certain cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 199.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albrecht, M., Sandmann, G., Musker, D. and Britton, G. (1991) Identification of epoxy—and hydroxyphytoene from norflurazon-treated Scenedesmus. J. Agric. Food Chem. 39: 566.

    CAS  Google Scholar 

  • Aragon, C.M.G., Murillo, F. J., De La Guardia, M.D. and Cerdá-Olmedo, E. (1976) An enzyme complex for the dehydrogenation of phytoene in Phycomyces. Eur. J. Biochem. 63: 71.

    PubMed  CAS  Google Scholar 

  • Armstrong, G.A., Alberti, M., Leach, F. and Hearst, J.E. (1989) Nucleotide sequence, organisation and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol. Gen. Genet. 216: 254.

    PubMed  CAS  Google Scholar 

  • Armstrong, G.A., Schmidt, A., Sandmann, G. and Hearst, J.E. (1990a) Genetic and biochemical characterisation of carotenoid biosynthesis mutants of Rhodobacter capsulatus. J. Biol. Chem. 265: 8329.

    PubMed  CAS  Google Scholar 

  • Armstrong, G.A., Alberti, M. and Hearst, J.E. (1990b) Conserved enzymes mediate the early reactions of carotenoid biosynthesis in nonphotosynthetic and photo synthetic prokaryotes. Proc. Natl. Acad. Sci. USA. 87: 9975.

    PubMed  CAS  Google Scholar 

  • Avalos, J., MacKenzie, A., Nelkie, D.S. and Bramley, P.M. (1988) Terpenoid biosynthesis in cell extracts of wild type and mutant strains of Gibberella fujikuroi. Biochem. Biophys. Acta 966: 257.

    CAS  Google Scholar 

  • Bartley, G.E. and Scolnik, P.A. (1989) Carotenoid biosynthesis in photosynthetic bacteria. J. Biol. Chem. 264: 13109.

    PubMed  CAS  Google Scholar 

  • Bartley, G.E., Schmidhauser, T.J., Yanofsky, C. and Scolnik, P.A. (1990) Carotenoid desaturases from Rhodobacter capsulatus and Neurospora crassa are structurally and functionally conserved and contain domains homologous to flavoprotein disulfide oxidoreductases. J. Biol. Chem. 265: 16020.

    PubMed  CAS  Google Scholar 

  • Bartley, G.E., Viitanen, P.V., Pecker, I., Chamovitz, D., Hirschberg, J. and Scolnik, P.A. (1991) Molecular cloning and expression in photosynthetic bacteria of a soybean cDNA coding for phytoene desaturase, an enzyme of the carotenoid biosynthesis pathway. Proc. Natl. Acad. Sci. USA. 88:6532.

    PubMed  CAS  Google Scholar 

  • Bauernfeind, J.C., Brubacher, G.B., Klaui, H.M. and Marusich, W.L. (1971) Use of carotenoids. In Carotenoids (Isler, O., ed.), Birkhauser Verlag, Basel, pp. 743–770.

    Google Scholar 

  • Ben-Amotz, A. and Avron, M. (1980) Glycerol, β-carotene and dry algal meal production by Dunaliella. In The Production and Use of Micro-algal Biomass (Shelef, G., and Soeder, C.J., eds), Elsevier, Amsterdam, pp. 603-610.

    Google Scholar 

  • Ben-Amotz, A. and Avron, M. (1983) On the factors which determine massive β-carotene accumulation in the halotolerant algae. Dunaliella bardawil. Plant Physiol. 72: 593.

    CAS  Google Scholar 

  • Ben-Amotz, A., Katz, A. and Avron, M. (1982) Accumulation of β-carotene in halotolerant algae: purification and characterisation of β-carotene rich globules from Dunaliella bardawil. (Chlorophyceae). J. Phycol. 18: 529.

    CAS  Google Scholar 

  • Benedict, C.R, Rosenfield, C.L, Mahan, J.R, Madha van, S. and Yoloyama, H. (1985) The chemical regulation of carotenoid biosynthesis. Citrus. Plant Science 41: 169.

    CAS  Google Scholar 

  • Bernhard, K. (1990) Synthetic astaxanthin. The route of a carotenoid from research to commercialisation. In Carotenoids: Chemistry and Biology (Krinsky, N.I., Mathews-Roth, M.M. and Taylor, R.F., eds.), Plenum Press, New York, pp. 337–363.

    Google Scholar 

  • Beyer, P., Weiss, G. and Kleinig, H. (1985) Solubilization and reconstitution of the membrane bound carotenogenic enzymes from daffodil chromoplasts. Eur. J. Biochem. 153: 341.

    PubMed  CAS  Google Scholar 

  • Beyer, P., Weiss, G. and Kleinig, H. (1989) Molecular oxygen and the state of geometric isomerisation of intermediates are essential in the carotene desaturation and cyclisation reactions in daffodil chromoplasts. Eur. J. Biochem. 184: 141.

    PubMed  CAS  Google Scholar 

  • Bird, C.R., Ray, J.A., Fletcher, J.D., Boniwell, J.M., Bird, A.S., Teulieres, C., Blain, I., Bramley, P.M. and Schuch, W. (1991) Using antisense RNA to study gene function: inhibition of carotenoid biosynthesis in transgenic tomatoes. BioTechnology 9: 635.

    CAS  Google Scholar 

  • Bowden, R.D., Cooper, R.D.G., Harris, C.J., Moss, G.P. Weedon, B.C.L and Jackman, L.M. (1983). J. Chem. Soc. Perkin Trans 1: 1465.

    Google Scholar 

  • Bramley, P.M. (1985) The in vitro biosynthesis of carotenoids. Adv. Lipid Res. 21: 243.

    CAS  Google Scholar 

  • Bramley, P.M. (1991) Carotenoid biosynthesis. In Target Sites for Herbicide Action (Kirkwood, R.C., ed.), Plenum, New York, pp.95–122.

    Google Scholar 

  • Bramley, P.M. (1992) Carotenoid biosynthesis. In Methods in Plant Biochemistry (Lea, P.J., ed.), Academic Press, London (in press).

    Google Scholar 

  • Bramley, P.M. and Mackenzie A. (1988) Regulation of carotenoid biosynthesis. Curr. Top. Cellul. Regul. 29: 291.

    CAS  Google Scholar 

  • Bramley, P.M. and Mackenzie, A. (1992). Carotenoid biosynthesis and its regulation in fungi. In Handbook of Applied Mycology, Vol 4, Fungal Biotechnology. (Arora, D.K., Elander, R.P. and Mukerjii, K.G., eds.), Marcel Dekker, New York, pp. 407–444.

    Google Scholar 

  • Bramley, P.M. and Sandmann, G. (1985). In vitro and in vivo biosynthesis of xanthophylls by the cyanobacterium Aphanocapsa Phytochemistry 24: 2919.

    CAS  Google Scholar 

  • Bramley, P., Teulieres, C., Blain, I., Bird, C.R. and Schuch, W. (1992) Biochemical characterisation of transgenic tomato plants in which carotenoid synthesis has been inhibited through the expression of antisense RNA to pTOM5. Plant J. 2: 343.

    CAS  Google Scholar 

  • Britton, G. (1979) Carotenoid biosynthesis—a target for herbicidal activity. Z. Naturforsch. 34C: 979.

    CAS  Google Scholar 

  • Britton, G. (1985) General carotenoid methods. Methods Enzymol. 111: 113.

    PubMed  CAS  Google Scholar 

  • Britton, G. (1988) Biosynthesis of carotenoids. In Plant Pigments (Goodwin, T.W., ed.), Academic Press, London, pp. 133–182.

    Google Scholar 

  • Britton, G. (1989) Carotenoids and polyterpenoids. Nat. Prod. Rep. 6: 359.

    PubMed  CAS  Google Scholar 

  • Britton, G. (1990) Carotenoid biosynthesis—an overview. In Carotenoids: Chemistry and Biology (Krinsky, N.I., Mathews-Roth, M.M., and Taylor, R.F., eds.), Plenum Press, New York, pp. 167–184.

    Google Scholar 

  • Britton, G. (1991) Carotenoids. In Methods in Plant Biochemistry, Vol. 7 (Charlwood, B.V. and Banthorpe, D.V., eds.), Academic Press, London, pp. 473–518.

    Google Scholar 

  • Britton, G. and Powls, R. (1977) Phytoene, phytofluene and ζ-carotene isomers from a Scenedesmus obliquus mutant. Phytochemistry. 16: 1253.

    CAS  Google Scholar 

  • Britton, G., Barry, P., and Young, A.J. (1987) The mode of action of diflufenican: its evaluation by HPLC. Proc. Crop Prot. Conf. Weeds. BLPC Publications, Thornton Heath, UK, p. 1015.

    Google Scholar 

  • Buckner, B., Kelson, T.L. and Robertson, D.S. (1990) Cloning of the yl locus of maize, a gene involved in the biosynthesis of carotenoids. The Plant Cell. 2: 867.

    PubMed  CAS  Google Scholar 

  • Camara, B. (1980). Biosynthesis of ketocarotenoids in Capsicum annuum fruits. FEBS Lett. 118: 315.

    CAS  Google Scholar 

  • Camara, B. (1984) Terpenoid metabolism in plastids: sites of phytoene synthase activity and synthesis in plant cells. Plant Physiol. 74: 112.

    PubMed  CAS  Google Scholar 

  • Camara, B. and Dogbo, O. (1986) Demonstration and solubilisation of lycopene cyclase from Capsicum chromoplast membranes. Plant Physiol. 80: 172.

    PubMed  CAS  Google Scholar 

  • Camara, B. and Moneger, R. (1981) Carotenoid biosynthesis, in vitro conversion of antheraxanthin to capsanthin by a chromoplast enriched fraction of Capsicum fruits. Biochem. Biophys. Res. Commun. 99: 1117.

    PubMed  CAS  Google Scholar 

  • Camara, B. and Moneger, R. (1982) Biosynthetic capabilities and localization of enzymatic activities in carotenoid metabolism of Capiscum annuum isolated chromoplasts. Physiol. Veg. 20: 757.

    Google Scholar 

  • Camara, B., Bardat, F. and Moneger, R. (1982) Sites of biosynthesis of carotenoids in Capsicum chromoplasts. Eur. J. Biochem. 127: 255.

    PubMed  CAS  Google Scholar 

  • Camara, B., Dogbo, O., d’Harlingue, A., Kleinig, H. and Moneger, R. (1985) Metabolism of plastid terpenoids: lycopene cyclisation by Capsicum chromoplast membranes. Biochem. Biophys. Acta. 836: 262.

    CAS  Google Scholar 

  • Candau, R., Bejarano, E.R. and Cerdá-Olmedo, E. (1991) In vivo channelling of substrates in an enzyme aggregate for β-carotene biosynthesis. Proc. Natl. Acad. Sci. USA 88: 4936.

    PubMed  CAS  Google Scholar 

  • Carattoli, A., Romano, N., Ballario, P., Morelli, G. and Macino, G. (1991) The Neurospora crassa carotenoid biosynthetic gene (Albino 3) reveals highly conserved regions among prenyltransferases. J. Biol. Chem. 266: 5854.

    PubMed  CAS  Google Scholar 

  • Cerdá-Olemdo, E. (1987). Production of carotenoids with fungi. In Biotechnology of Vitamin, Growth Factor and Pigment Production (Vandamme, E., ed.), Elsevier, Amsterdam, pp. 21–42.

    Google Scholar 

  • Chamovitz, D., Pecker, I. and Hirschberg, J. (1991) The molecular basis of resistance to the herbicide norflurazon. Plant Mol. Biol. 16:967.

    PubMed  CAS  Google Scholar 

  • Clarke, I.E., Sandmann, G., Bramley, P.M. and Böger, P. (1982) Carotene biosynthesis with isolated photosynthetic membranes. FEBS Lett. 140: 203.

    CAS  Google Scholar 

  • Clough, J.M. and Pattenden, G. (1979) Naturally occurring poly-cis carotenoids. Stereochemistry of poly-cis lycopene and its cogeners in ‘Tangerine’ tomato fruits. J. Chem. Soc. Chem. Commun. 616.

    Google Scholar 

  • Clough, J.M. and Pattenden, G. (1983) Stereochemical assignment of prolycopene and other poly-Z-isomeric carotenoids in fruits of the tangerine tomato Lycopersicon esculentum var. Tangella. J. Chem. Soc, Perkin Trans. 1: 3011.

    Google Scholar 

  • Commission on Biochemical Nomenclature (1971) Biochemistry. 10: 4827.

    Google Scholar 

  • Commission on Biochemical Nomenclature (1975) Biochemistry. 14: 1803.

    Google Scholar 

  • Davies, B.H. (1976) Carotenoids. In Chemistry and Biochemistry of Plant Pigments, Vol. 2, 2nd ed (Goodwin, T.W. ed.), Academic Press, London, pp. 38–165.

    Google Scholar 

  • Davies, B.H., Matthews, S. and Kirk, J.T.O. (1970) The nature and biosynthesis of the carotenoids of different colour varieties of Capsicum annuum. Phytochemistry. 9: 797.

    CAS  Google Scholar 

  • de la Guardia, M.D., Aragon, C.M.G., Murillo, F.J. and Cerdá-Olmedo, E. (1971) A carotenogenic enzyme aggregate in Phycomyces: evidence from quantitative complementation. Proc. Natl. Acad. Sci. USA 68: 2012.

    PubMed  Google Scholar 

  • Dean, C., Sjodin, C., Bancroft, I., Lawson, E., Lister, C, Scofield, S. and Jones, J. (1991) Development of an efficient transposon tagging system in Arabidopsis thaliana. In Molecular Biology of Plant Development (Jenkins, G.I. and Schuch, W., eds.), The Company of Biologists, Cambridge, UK, pp.63–75.

    Google Scholar 

  • Dogbo, O., Bardat, J., Laferriere, A., Quennemet, J., Brangeon, J. and Camara, B. (1987) Metabolism of terpenoids I. Biosynthesis of phytoene in plastid stroma isolated from higher plants. Plant Sci. 49: 89.

    CAS  Google Scholar 

  • Dogbo, O., Laferriere, A., d’Harlingue, A. and Camara, B. (1988) Carotenoid biosynthesis: isolation and characterisation of a bifunctional enzyme catalysing the synthesis of phytoene. Proc. Natl. Acad. Sci. USA 85: 7054.

    PubMed  CAS  Google Scholar 

  • Federoff, N.V., Furtek, D.B. and Nelson, O.E. Jr. (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). Proc. Natl Acad. Sci. USA 81: 3825.

    Google Scholar 

  • Fishwick, M.J. and Wright, A.J. (1980) Isolation and characterisation of amyloplast envelope membranes from Solanum tuberosum. Phytochemistry 19: 55.

    CAS  Google Scholar 

  • Giuliano, G., Pollock, D. and Scolnik, P.A. (1986) The gene crtI mediates the conversion of phytoene into colored carotenoids in Rhodopseudomonas capsulata. J. Biol. Chem. 261: 12925.

    PubMed  CAS  Google Scholar 

  • Goodwin, T.W. (1958) Studies in carotenogenesis 24. The changes in carotenoid and chlorophyll pigments in the leaves of deciduous trees during autumn necrosis. Biochem. J. 68: 503.

    PubMed  CAS  Google Scholar 

  • Goodwin, T.W. (1973) Carotenoids. In Phytochemistry, Vol. 1 (Miller, L. P., ed.), Van Nostrand Reinhold, New York. pp. 112–142.

    Google Scholar 

  • Goodwin, T.W. (1976) Chemistry and Biochemistry of Plant Pigments, Academic Press, London.

    Google Scholar 

  • Goodwin, T.W. (1980) Biochemistry of Carotenoids, Vol. 1, Chapman and Hall, London.

    Google Scholar 

  • Goodwin, T.W. (1983) Developments in carotenoid biochemistry over 40 years. Biochem. Soc. Trans. 11: 473.

    PubMed  CAS  Google Scholar 

  • Goodwin, T.W. (1986). Metabolism, nutrition and function of carotenoids. Annu-Rev. Nutr. 6: 273.

    PubMed  CAS  Google Scholar 

  • Goodwin, T.W. and Britton, G. (1988) Distribution and analysis of carotenoids. In Plant Pigments (Goodwin, T.W., ed.), Academic Press, London, pp. 61–131.

    Google Scholar 

  • Goodwin, T.W. and Goad, L.J. (1971) Carotenoids and triterpenoids. In The Biochemistry of Fruits and Their Products, Vol. 1, (Hulme, A. C., ed.), Academic Press, London, pp. 305–368.

    Google Scholar 

  • Graebe, J.E. (1968) Biosynthesis of kaurene, squalene and phytoene from MVA 2-14C in a cell free system from pea fruits. Phytochemistry 7: 2003.

    CAS  Google Scholar 

  • Gray, J.C. (1987) Control of isoprenoid biosynthesis in higher plants. Adv. Bot. Res. 14: 25.

    CAS  Google Scholar 

  • Grumbach, K.H. (1984) Does the chloroplast envelope contain carotenoids and quinones in vivo? Physiol. Plant 60: 180.

    CAS  Google Scholar 

  • Grumbach, K.H. and Britton, G. (1984) Carotenoid localization and biosynthesis in radish seedlings (Raphanus sativus) grown in the presence of absence of bleaching herbicides. In Advances in Photosynthesis Research Vol. IV (Sybesma, C., ed.) Maritinus Nijoff/Dr W. Junk Publishers, The Hague, Netherlands, pp.69–75.

    Google Scholar 

  • Hager, A. and Perz, H. (1970) Veranderung der Lichtabsorption eines Carotinoids in Enzym (De-Epoxidue)—Substrat (Violaxanthin) Komplex. Planta 93: 314.

    CAS  Google Scholar 

  • Hauge, B.M., Giraudat, J., Hanley, S., Hwang, I., Kohchi, T. and Goodman, H.M. (1990) Physical map** of the Arabidopsis genome and its applications. J. Cell. Biol. 14E: 259.

    Google Scholar 

  • Hill, H.M., Calderwood, S.K. and Rogers, L.J. (1971) Conversion of lycopene to β-carotene by plastids isolated from higher plants. Phytochemistry 10: 2051.

    CAS  Google Scholar 

  • Jeffrey, S.W., Douce, R. and Benson, A.A. (1974) Carotenoid transformations in the chloroplast envelope. Proc. Natl Acad. Sci. USA 71: 807.

    PubMed  CAS  Google Scholar 

  • Jones, B.L. and Porter, J.W. (1986) Biosynthesis of carotenoids in higher plants. CRC Critical Reviews in Plant Science 3: 295.

    CAS  Google Scholar 

  • Joyard, J., Block, M.A. and Douce, R. (1991) Molecular aspects of plastid envelope biochemistry. Eur. J. Biochem. 199: 489.

    PubMed  CAS  Google Scholar 

  • Karrer, P. and Eugster, C.H. (1950) The occurrence of carotenoids in pollen and anthers of various fruits. Helv. Chem. Acta. 33: 300.

    CAS  Google Scholar 

  • Karrer, P. and Jucker, E. (1950) Carotenoids, Elsevier, New York.

    Google Scholar 

  • Kienzle, F. (1976) The technical synthesis of carotenoids. PureAppl. Chem. 47: 183.

    CAS  Google Scholar 

  • Kinzer, S.M., Schwager, S.J. and Mutschler, M.A. (1990) Map** of ripening-related or specific cDNA clones of tomato. Theor. Appl. Genet. 79: 489.

    CAS  Google Scholar 

  • Kirk, J.T.O. and Tilney-Bassett, R. (1978) The Plastids 2nd ed, Freeman, San Francisco.

    Google Scholar 

  • Klaui, H. (1982) Industrial and commercial uses of carotenoids. In Carotenoid Chemistry and Biochemistry. (Britton, G. and Goodwin, T.W., eds.), Pergamon Press, Oxford, pp. 309–317.

    Google Scholar 

  • Klausner, A. (1986) Algacultures: food for thought. BioTechnology. 4: 947.

    Google Scholar 

  • Kleinig, H. (1989) The role of plastids in isoprenoid biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 40: 39.

    CAS  Google Scholar 

  • Kleinig, H. and Beyer, P. (1985) Carotene synthesis in spinach (Spinacia oleracae L.) chloroplasts and daffodil (Narcissuspseudonarcissuss L.) chromoplasts. Methods Enzymol. 110: 267.

    CAS  Google Scholar 

  • Knapp, J., Moureau, P., Schuch, W. and Grierson, D. (1989) Organisation and expression of polygalacturonase and other ripening related genes in Ailsa Craig ‘Never ripe’ and ‘Ripening inhibitor’ tomato mutants. Plant Mol. Biol. 12: 105.

    CAS  Google Scholar 

  • Kreuz, K., Beyer, P. and Kleinig, P. (1982) The site of carotenogenic enzymes in chromoplasts from Narcissuspseudonarcissus. Planta. 154: 66.

    CAS  Google Scholar 

  • Krinsky, N.I. (1989). ß-Carotene: functions. In New Protective Roles for Selected Nutrients. (Spiller, G.A., ed.), AR Liss, New York, pp. 1–16.

    Google Scholar 

  • Krinsky, N.I. (1990) Carotenoids in medicine. In Carotenoids: Chemistry and Biology. (Krinsky, N.I., Mathews-Roth, M.M. and Taylor, R.F., eds.), Plenum Press, New York, pp. 279–291.

    Google Scholar 

  • Kuhn, R. and Grundmann, C. (1932) Die Konstitution des lycopins. Ber. Deutsch. Chem. Ges. 65: 1880.

    Google Scholar 

  • Kuntz, M., Römer, S., Suire, C., Hugueney, P., Weil, J.H., Schantz, R. and Camara, B. (1992) Identification of a cDNA for the plastid-located geranyleranyl pyrophosphate synthase from Capsicum annuum: correlative increase in enzyme activity and transcript level during fruit ripening. Plant J. 2: 25.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S.C., Subbarayan, C., Beler, D. A. and Porter, J.W. (1969) The conversion of lycopene-15,15′ 3H to cyclic carotenes by soluble extracts of higher plant plastids. J. Biol. Chem. 244: 3635.

    Google Scholar 

  • Kushwaha, S.C., Suzue, G., Subbarayan, C. and Porter, J.W. (1970) The conversion of phytoene-14C to acyclic, monocyclic, and dicyclic carotenes by soluble enzyme systems obtained from the plastids of tomato fruit. J. Biol. Chem. 245: 4708.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S.C., Kates, M. and Porter, J.W. (1976) Enzymatic synthesis of C40 carotenes by cell-free preparation from Halobacterium cutirubrum. Can. J. Biochem. 54: 816.

    PubMed  CAS  Google Scholar 

  • Kushwaha, S.C., Kates, M., Renaud, R.L. and Subden, R.E. (1978) The terpenyl pyrophosphates of wild type and tetraterpene mutants of N. crassa. Lipids 13: 332.

    Google Scholar 

  • Lichtenthaler, H.K., Prenzel, U. and Kuhn, G. (1982) Carotenoid composition of chlorophyll-caro-tenoids proteins from radish cotyledons. Z. Naturforsch. 37C: 10.

    CAS  Google Scholar 

  • Lütke-Brinkhaus, F., Liedvogel, B., Kreuz, K. and Kleinig, H. (1982) Phytoene synthase and phytoene dehydrogenase associated with envelope membranes from spinach chloroplasts. Planta 156: 176.

    Google Scholar 

  • Marki-Fischer, E. and Eugster, C.H. (1985) Carotenoids from anthers and petals of Lilium tigrium cv ‘Red Night’. Helv. Chem. Acta. 68: 1704.

    Google Scholar 

  • Mathews-Roth, M.M. (1982) Medical applications and uses of carotenoids. In Carotenoid Chemistry and Biochemistry. (Britton, G., and Goodwin, T.W., eds.) Pergamon Press, Oxford, pp.297–307.

    Google Scholar 

  • Mathews-Roth, M.M. (1989) ß-Carotene: clinical aspects. In New Protective Roles for Selected Nutrients. (Spiller, G.A., ed.), Liss Inc., New York, pp. 17–38.

    Google Scholar 

  • Maudinas, B., Bucholtz, M.L., Papastephanou, C., Katiyar, S.S., Briedis, A.V. and Porter, J.W. (1975) ATP stimulation of the activity of partially purified phytoene synthase complex. Biochem. Biophys. Res. Commun. 66: 430.

    PubMed  CAS  Google Scholar 

  • Maudinas, B., Bucholtz, M.L., Papastephanou, C., Katiyar, S.S., Briedis, A.V. and Porter, J.W. (1977) The partial purification and properties of a phytoene synthesising enzyme system. Archiv. Biochem. Biophys. 180: 354.

    CAS  Google Scholar 

  • Maunders, M. J., Holdsworth, M. J., Slater, A., Knapp, J., Bird, C.R., Schuch, W. andGrierson, D. (1987) Ethylene stimulates the accumulation of ripening-related mRNAs in tomatoes. Plant Cell Environ. 10: 177.

    CAS  Google Scholar 

  • Mayer, H., and Isler, O. (1971). Total synthesis. In Carotenoids. (Isler, O., ed.), Birkhauser Verlag, Basel, pp. 325–575.

    Google Scholar 

  • Mayer, M.P., Bartlett, D.L., Beyer, P. and Kleinig, H. (1989) The in vitro mode of action of bleaching herbicides on the desaturation of 15-cis-phytoene and cis-ζ-carotene in isolated daffodil chromoplasts. Pestic. Biochem. Physiol. 34: 111.

    CAS  Google Scholar 

  • Mayer, M.P., Beyer, P. and Kleinig, H. (1990) Quinone compounds are able to replace molecular oxygen as terminal electron acceptors in phytoene desaturation in chromoplasts of Narcissus pseudonarcissus L. Eur. J. Biochem. 191: 359.

    PubMed  CAS  Google Scholar 

  • McDermott, J.C.B., Britton, G. and Goodwin, T.W. (1973) Carotenoid biosynthesis in a Flavobacterium sp. Stereochemistry of H elimination in the desaturation of phytoene to lycopene, rubixanthin and zeaxanthin. Biochem. J. 134: 1115.

    PubMed  CAS  Google Scholar 

  • McLaughlin, M. and Walbot, V. (1987) Cloning of a mutable bz2 allele of maize by transposon tagging and differential hybridisation. Genetics 117: 771.

    PubMed  CAS  Google Scholar 

  • Misawa, N., Nakagawa, M., Kobayashi, K., Yamano, S., Izawa, Y., Nakamura, K. and Harashima, K. (1990) Elucidation of the Erwinia uredovora carotenoid biosynthetic pathway by functional analysis of gene products expressed in Escherichia coli. J. Bacteriol. 172: 6704.

    PubMed  CAS  Google Scholar 

  • Mohanty, S.S. (1988) Stereochemie des biologischen Ringschlussess bei Carotinen: synthese von spezifisch markierten deuterierten Vorlaufern und Einbauexperimente. Ph.D. thesis, University of Zurich.

    Google Scholar 

  • Narita, O.J. and Gruissem, W. (1989) Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening. The Plant Cell 1: 181.

    PubMed  CAS  Google Scholar 

  • Nelson, M.A., Morelli, G., Carattolli, A., Romano, N. and Macino, G. (1989) Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol. Cell. Biol. 9: 1271.

    PubMed  CAS  Google Scholar 

  • Nonomura, A.M. (1990). Industrial biosynthesis of carotenoids. In Carotenoids: Chemistry and Biology (Krinsky, N.I., Mathews-Roth, M.M., and Taylor, R.F., eds.), Plenum Press, New York, pp. 365–375.

    Google Scholar 

  • O’Reilly, C., Shepherd, N.S., Pereira, A., Schwarz-Sommer, Z., Bertram, I., Robertson, D.S., Peterson, P.A., and Saedler, H. (1985) Molecular cloning of the al locus of Zea mays using the transposable elements. EMBO J. 41: 887.

    Google Scholar 

  • Perry K.L., Simonitch, T.A., Harrison-Lavoie, K.J. and Liu, S.-H. (1986) Cloning and regulation of Erwinia herbicola pigment genes. J. Bacteriol. 168: 607.

    PubMed  CAS  Google Scholar 

  • Peter, G.F., Machold, D. and Thornber, J.P. (1988) In Plant Membranes, Structure, Assembly and Function (Harwood, J. L. and Walton, T. J., eds.), Biochemical Society, London, p. 17.

    Google Scholar 

  • Pfander, H. and Schurtenberger, H. (1982) Biosynthesis of C20 carotenoids in Crocus sativus. Phytochemistry 21: 1039.

    CAS  Google Scholar 

  • Porter, J.W. and Anderson, D.G. (1962) The biosynthesis of carotenes. Arch. Biochem. Biophys. 97: 520.

    PubMed  CAS  Google Scholar 

  • Porter, J.W. and Lincoln, R.E. (1950) Lycopersicon selections containing a high content of carotenes and colourless polyenes. II. The mechanism of carotene biosynthesis. Arch. Biochem. Biophys. 27: 390.

    CAS  Google Scholar 

  • Poulter, C.D. (1990) Isopentenyl diphosphate to squalene—enzymology and inhibition. In Biochemistry of Cell Walls and Membranes in Fungi (Kuhn, P.J., Trinci, A.P.J., Jung, M.J., Goosey, M.W. and Cop**, L.G., eds.), Springer, New York, pp. 169–188.

    Google Scholar 

  • Poulter, C.D. and Rilling, H.C (1983) Prenyl transferases and isomerase. In Biosynthesis of Isoprenoid Compounds, Vol. 1 (Porter, J.W. and Spurgeon, S.L., eds.), John Wiley and Sons, New York, pp.161–224.

    Google Scholar 

  • Qureshi, N. and Porter, J.W. (1983) Conversion of acetyl CoA to isopentenyl pyrophosphate. In Biosynthesis of Isoprenoid Compounds, Vol.1 (Porter, J.W., and Spurgeon, S.L., eds.), Wiley, New York, pp. 47–94.

    Google Scholar 

  • Qureshi, A.A., Andrews, A.G., Qureshi, N. and Porter, J.W. (1974) The enzymatic conversion of cis-[l4C] phytofluene, trans-[14C] phytofluene and -ζ-carotene to more unsaturated acyclic, monocyclic and dicyclic carotenes by a cell-free preparation of red tomato fruits. Arch. Biochem. Biophys. 162: 93.

    PubMed  CAS  Google Scholar 

  • Ray, J., Bird, C.R., Maunders, M., Grierson, D. and Schuch, W. (1987) Sequence of pTOM5, a ripening related cDNA from tomato. Nucl. Acids Res. 24: 10587.

    Google Scholar 

  • Ray, J., Moureau, P., Bird, C.R., Bird, A., Grierson, D., Maunders, M., Truesdale, M., Bramley, P., and Schuch, W. (1992) Cloning and characterisation of a gene involved in phytoene synthesis from tomato. Plant Mol. Biol. 19: 401.

    PubMed  CAS  Google Scholar 

  • Raymundo, L.C. and Simpson, K.L. (1972) The isolation of poly-cis-ζ-carotene from the tangerine tomato. Phytochemistry 11: 397.

    CAS  Google Scholar 

  • Rick, C.M. (1982) Linkage map of the tomato (Lycopersicon esculentum). Genetic Maps 2: 360.

    Google Scholar 

  • Robertson, D.S. (1975) Survey of the albino and white-endosperm mutants of maize. Their phenotype and gene symbols. J. Hered. 66: 67.

    Google Scholar 

  • Robertson, D.S., and Anderson, I.C (1961) Carotenoid protection of porphyrins from photo destruction. Progress in Photobiology. Third International Congress on Photobiology, Copenhagen (Christensen, B.C. and Buchanan, B. eds.), Elsevier Publishing, Amsterdam p. 477.

    Google Scholar 

  • Rock, C.D. and Zeevart, J. A. (1991) The aba mutant of Arabidopsis thaliana is impaired in epoxy-carotenoid biosynthesis. Proc. Natl Acad. Sci. USA 88: 7496.

    PubMed  CAS  Google Scholar 

  • Sandmann, G. (1991) Biosynthesis of cyclic carotenoids: biochemistry and molecular genetics of the reaction sequence. Physiologia Plantarum. 83: 186.

    CAS  Google Scholar 

  • Sandmann, G. and Böger, P. (1989) Inhibition of carotenoid biosynthesis by herbicides. In Target Sites of Herbicide Action (Böger, P. and Sandmann, G., eds.), CRC Press, Boca Raton, Florida, pp. 25–44.

    Google Scholar 

  • Sandmann, G. and Bramley, P.M. (1985) The in vitro biosynthesis of ß-cryptoxanthin and related xanthophylls with Aphanocapsa membranes. Biochem. Biophys. Acta 843: 73.

    CAS  Google Scholar 

  • Sandmann, G. and Kowalczyk, S. (1989) In vitro carotenogenesis and characterization of the phytoene desaturase reaction in Anacystis. Biochem. Biophys. Res. Commun. 163: 916.

    PubMed  CAS  Google Scholar 

  • Sandmann, G. and Misawa, N. (1992) New functional assignment of the carotenogenic genes crtB and crtE with constructs of these genes from Erwinia species. FEMS Microbiol. Lett. (in press).

    Google Scholar 

  • Sandmann, G., Woods, W.S. and Tuveson, R.W. (1990) Identification of carotenoids in Erwinia herbicola and in a transformed E. coli strain. FEMS Microbiol. Lett. 71: 77.

    CAS  Google Scholar 

  • Schmidhauser, T.J., Lauter, F.R., Russo, V.E.A. and Yanofsky, C. (1990) Cloning, sequence and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol. Cell. Biol. 10: 5064.

    PubMed  CAS  Google Scholar 

  • Schmidt, A. and Sandmann, G. (1990) Cloning and nucleotide sequence of the crtl gene encoding phytoene dehydrogenase from the cyanobacterium Aphanocapsa PCC6714. Gene 91: 113.

    PubMed  CAS  Google Scholar 

  • Schmidt, A., Sandmann, G., Armstrong, G.A., Hearst, J.E. and Böger, P. (1989) Immunological detection of phytoene desaturase in algae and higher plants using an antiserum raised against a bacterial fusion-gene construct. Eur. J. Biochem. 184: 375.

    PubMed  CAS  Google Scholar 

  • Schnurr, G., Schmidt, A. and Sandmann, G. (1991) Map** of a carotenogenic gene cluster from Erwinia herbicola and functional identification of six genes. FEMS Microbiol. Lett. 78: 157.

    CAS  Google Scholar 

  • Scolnik, P.A., Walker, M.A. and Marrs, B.L. (1980) Biosynthesis of carotenoids derived from neurosporene in Rhodopseudomonas capsulata. J. Biol. Chem. 255: 2427.

    PubMed  CAS  Google Scholar 

  • Serrano, A., Gimenez, P., Schmidt, A. and Sandmann, G. (1990) Immunocytochemical localisation and functional determination of phytoene desaturase in photoautotrophic prokaryotes. J. Gen. Microbiol. 136: 2465.

    CAS  Google Scholar 

  • Siefermann, D. and Yamamoto, H.Y. (1975) Light induced de-expoxidation of violaxanthin in lettuce chloroplasts IV. The effect of electron transport conditions on violaxanthin availability. Biochim. Biophys. Acta 387: 149.

    PubMed  CAS  Google Scholar 

  • Siefermann-Harms, D. (1985) Carotenoids in photosynthesis. I Location in photosynthetic membranes and light-harvesting function. Biochim. Biophys. Acta 811: 325.

    CAS  Google Scholar 

  • Slater, A., Maunders, M.J., Edwards, K., Schuch, W. and Grierson, D. (1985) Isolation and characterisation of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol. Biol. 5: 137.

    CAS  Google Scholar 

  • Spurgoen, S.L. and Porter, J.W. (1983) Biosynthesis of carotenoids. In Biosynthesis oflsoprenoids, Vol. 2 (Porter, J.W. and Spurgeon, S.L., eds.), Wiley, New York, pp. 1–122.

    Google Scholar 

  • Stevens, M.A. and Rick, C.M. (1986) Genetics and breeding. In The Tomato Crop (Atherton, J.G., and Rudich, J., eds.), Chapman and Hall, London and New York, pp. 35–109.

    Google Scholar 

  • Straub, O. (1976) Key to Carotenoids. Birkhauser Verlag, Basel.

    Google Scholar 

  • Straub, O. (1987) Key to Carotenoids. 2nd edn, Birkhauser Verlag, Basel.

    Google Scholar 

  • Subbarayan, C., Kushwaha, S.C., Suzue, G. and Porter, J.W. (1970) Enzymatic conversion of lPP-4-14C and phytoene-14C to acyclic carotenes by an ammonium sulphate-precipitated spinach enzyme system. Archiv. Biochem. Biophys. 137:547.

    CAS  Google Scholar 

  • Tang, X-S. and Sahto, K. (1985) The oxygen-evolving photosystem II core complex. FEBS Lett. 179:6.

    Google Scholar 

  • Tanksley, S.D and Mutschler, M.A. (1990) Linkage map of tomato. In Genetics Maps, 5th edn (J.O’Brien, ed.) Cold Spring Harbour Press, New York.

    Google Scholar 

  • Taylor, R.F. (1990) Carotenoids: products, applications and markets. In Spectrum: Food Industry, Decision Resources Inc., Burlington MA, pp. 12-1–12-11.

    Google Scholar 

  • Theres, N., Scheele, T. and Starlinger, P. (1987) Cloning of the Bz2 locus of Zea mays using the transposable element Ds as a gene tag. Mol. Gen. Genet. 209:193.

    PubMed  CAS  Google Scholar 

  • Thornber, J.P. (1975) Chlorophyll proteins: light harvesting and reaction center components of plants. Annu. Rev. Plant Physiol. 26:127.

    CAS  Google Scholar 

  • van der Krol, A.R., Lentung, P.E., Veenstra, J., van der Meer, I.M., Koes, R.E., Gerats, A.G.M., Mol, J.N.M. and Stuitje, A.R. (1988) An antisense chalcone synthase gene in transgenic plants inhibits flower pigmentation. Nature 333:866.

    Google Scholar 

  • Weedon, B.C.L. (1971) Occurrence. In Carotenoids (Isler, O., ed.), Birkhauser Verlag, Basel, pp. 29–59.

    Google Scholar 

  • Whately, J.H. and Whately, F.R. (1987) What is a chromoplast? New Phytol. 106:667.

    Google Scholar 

  • White, J.W., Zscheile, F.P. and Brunson, A.M. (1942) The carotenoids of yellow corn grain. J. Amer. Chem. Soc. 64:2603.

    CAS  Google Scholar 

  • Will, O.H., Ruddat, M., Garber, E.D. and Kezdy, F.J. (1984) Characterisation of carotene accumulation in Ustilago violacea using high performance liquid chromatography. Curr. Microbiol. 10:57.

    CAS  Google Scholar 

  • Winterstein, A., Studer, A. and Rüegg, R. (1960) Neuere Ergerbruisse der Carotinoidforschung. Ber. Deutch Chem. Ges. 93:2951.

    CAS  Google Scholar 

  • Yamamoto, H.Y. and Higashi, R.M. (1978) Violaxanthin de-epoxidase, lipid composition and substrate specifity. Archiv. Biochem. Biophys. 190:514.

    CAS  Google Scholar 

  • Yamamoto, H.Y., Chenchin, E.E. and Yamada, D.K. (1974) Effect of chloroplast lipids on violaxanthin de-epoxidase activity. Proc. Third Int. Congr. Photosyn (Avron, M., ed.), Elsevier, Amsterdam, p. 1999.

    Google Scholar 

  • Yen, H-C. and Marrs, B. (1976) Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J. Bacteriol. 126: 619.

    PubMed  CAS  Google Scholar 

  • Yokoyama, H. and White, M.J. (1970) Carotenone formation in Triphasia trifolia. Phytochemistry 9:1795.

    CAS  Google Scholar 

  • Yokoyama, H., Hsu, W.J. and Poling, S.M. (1975). Method for colouring fruits and vegetables. US Patent 3 91 148, Washington DC.

    Google Scholar 

  • Yokoyama, H., Hsu, W.J., Poling, S.M. and Hayman, E. (1982) Chemical regulation of carotenoid biosynthesis. In Carotenoid Chemistry and Biochemistry (Britton, G. and Goodwin, T.W, eds.), Pergamon Press, Oxford, p. 371.

    Google Scholar 

  • Young, A.J. (1991) Inhibition of carotenoid biosynthesis. In Herbicides (Baker, N.R. and Percival, M.P., eds.), Elsevier, Amsterdam, pp. 131–171.

    Google Scholar 

  • Zechmeister, L. (1962) Cis-Trans Isomeric Compounds, Vitamins A and Arylpolyenes. Academic Press, New York.

    Google Scholar 

  • Zsebo K.M. and Hearst, J.E. (1984) Genetic-physical map** of a photosynthetic gene cluster from R. capsulate. Cell 37:937

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bramley, P.M., Bird, C.R., Schuch, W. (1993). Carotenoid biosynthesis and manipulation. In: Grierson, D. (eds) Biosynthesis and Manipulation of Plant Products. Plant Biotechnology Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2142-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2142-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4949-8

  • Online ISBN: 978-94-011-2142-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation