High Resolution Microscopy Characterization of Nanostructured Materials

  • Chapter
Nanophase Materials

Part of the book series: NATO ASI Series ((NSSE,volume 260))

  • 442 Accesses

Abstract

High resolution microscopy techniques have been used to study fundamental problems related to the improvement of permanent magnets, to quantify interfacial roughness of layered structures, and to determine the decomposition behavior of heterogeneous alloys. The microstructural information obtained provides data for correlation with the relevant magnetic data and, hence, considerable insight into materials behavior, aiding in the understanding and improvement of materials performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (Brazil)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (Brazil)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (Brazil)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J. (1965) Electron Microscopy of Thin Crystals, Butterworths, London.

    Google Scholar 

  2. Thomas, G. and Goringe, M. J. (1979) Transmission Electron Microscopy of Materials, Wiley-Interscience, New York.

    Google Scholar 

  3. Chescoe, D. and Goodhew, P. J. (1984) The Operation of the Transmission Electron Microscope, Oxford University Press.

    Google Scholar 

  4. Williams, D. B. (1984) Practical Electron Microscopy in Materials Science, Philips Elect. Inst.

    Google Scholar 

  5. Edington, J. W. (1974–1977) Practical Electron Microscopy in Materials Science, Philips Elect. Inst.

    Google Scholar 

  6. Spence, J. C. H. (1988) Experimental High Resolution Electron Microscopy (2nd ed.), Oxford University Press.

    Google Scholar 

  7. Wagner, R. (1982) ’Field Ion Microscopy in Materials Science’, in Crystals, vol. 6, Springer, Berlin.

    Google Scholar 

  8. Ormerod, J. (1985) J. Less-Common Met. 111, 49.

    Article  Google Scholar 

  9. Schneider, G., Henig, E. Th., Stadelmeier, H. H., Petrow, G. (1987) in C. Herget, H. Kronmüller, and R. Poerschke (eds.), Proc. 5th Int. Symp. on Magnetic Anisotropy and Coercivity in Rare Earth-Transition Metal Alloys, Deutsche Physikalische Gesellschaft, Bad Honnef, Germany, p. 347.

    Google Scholar 

  10. Croat, J. J., Herbst, J. F., Lee, R. W., and Pinkerton, F. E. (1984) J. Appl. Phys. 55, 2078.

    Article  ADS  Google Scholar 

  11. Hütten, A. and Haasen, P. (1991) Acta Metall Mater. 39, 1.

    Article  Google Scholar 

  12. Köstler, C., Ramesh, R., Echer, C. J., Wecker, J. and Thomas, G. (1989) Acta Metall. 37, 1945.

    Article  Google Scholar 

  13. Hiroyoshi, H., Saito, N., Kido, G., Nakugawa, Y., Hirosawa, S., and Sagawa, M. (1986) J. Magn. & Magn. Mater. 54–57, 583.

    Article  Google Scholar 

  14. Köstler, C., Chandramouli, M., Thomas, G., and Schultz, L. (1992) J. Magn. & Magn. Mater. 110, 264.

    Article  ADS  Google Scholar 

  15. Sun, H., Otani, Y., Coey, J. M. D., Meekison, C. D., and Jakubovics, J. P. (1990) J. Appl. Phys. 67, 4659.

    Article  ADS  Google Scholar 

  16. Box, G. E. P. and Jenkins, G. M. (1970) Time Series Analysis, Forecasting and Control, Holden Day, San Francisco.

    MATH  Google Scholar 

  17. Barthelmy, A., Fert, A., Baibich, M. N. Hadjoudj, S., Petroff, F., Etienne, P., Cabanel, R., Lequieu, S., Nguyen, Van Dan, and Creuzet, G. (1990) J. Appl. Phys. 67, 5908.

    Article  ADS  Google Scholar 

  18. Parkin, S. S. P., Li, Z. G., and Smith, D. J. (1991) Appl. Phys. Lett. 58, 2710.

    Article  ADS  Google Scholar 

  19. Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hütten, A., and Thomas, G. (1992) Phys. Rev. Lett. 68, 3744.

    Article  ADS  Google Scholar 

  20. **ao, J. Q., Jiang, J. S., and Chien, C. L. (1992) Phys. Rev. Lett. 68, 3749.

    Article  ADS  Google Scholar 

  21. Zhang, S. (1992) Appl. Phys. Lett. 61, 1855.

    Article  ADS  Google Scholar 

  22. Bormann, R. (1993) private communication.

    Google Scholar 

  23. Lupis, C. H. P. (1983) Chemical Thermodynamics of Materials, North-Holland, New York,Amsterdam and Oxford, p. 380.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huetten, A., Thomas, G. (1994). High Resolution Microscopy Characterization of Nanostructured Materials. In: Hadjipanayis, G.C., Siegel, R.W. (eds) Nanophase Materials. NATO ASI Series, vol 260. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1076-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1076-1_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4469-1

  • Online ISBN: 978-94-011-1076-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation