Laser Induced Breakdown Spectroscopy Technique For In-Situ Dust Detecting In A Next-Step Tokamak

  • Chapter
Hydrogen and Helium Recycling at Plasma Facing Materials

Part of the book series: NATO Science Series ((NAII,volume 54))

Abstract

A technique based on laser-induced breakdown spectroscopy (LIBS) is proposed for detecting in-situ dust on the plasma-exposed surfaces and in the grooves of plasmafacing components in the next-generation of fusion devices (e.g., ITER-FEAT). It is based on laser-induced ablation of wall material and spectral analysis of the laser spark flash-light collected by imaging optics and transmitted to the detection system. This could give space- and time-resolved information on the presence of dust, or loosely bound films, their characteristic deposition patterns, elemental composition, and possibly their hydrogen content, without the necessity of breaking the machine vacuum. We have performed some simple proof-of-principle experiments to demonstrate the suitability of this technique, which might provide an effective non-intrusive in-situ surface analysis method for surveying in-vessel dust accumulation in future fusion devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. Federici, et al., Plasma-material interactions in current tokamaks and their implications for next-step fusion reactors, submitted to Nucl Fusion.

    Google Scholar 

  2. G. Federici, et al. (1999) In-Vessel tritium retention and removal in ITER, J. Nucl. Mater. 266-269 14–19.

    Article  CAS  Google Scholar 

  3. G. Janeschitz. (2001) Plasma wall interactions in ITER FEAT, J. Nucl. Mater. 290-293 1–15.

    Article  CAS  Google Scholar 

  4. K.A. McCarthy, D.A. Petti, W.J. Carmack, and S.V. Gorman. (1998) Tokamak dust in ITER—saefty issues and R&D supporting dust limits, Fus. Technol. 34 728–735.

    CAS  Google Scholar 

  5. G.F. Counsell, et al. (2001) Towards an improved understanding of the relationship between plasma edge and materials issues in a next-step fusion device, J. Nucl. Mater. 290-293 255–261.

    Article  CAS  Google Scholar 

  6. J.P. Coad, M. Rubel, C.H. Wu. (1997) The amount and distribution of deuterium retained in the JET divertor after the C and Be phases in 1994–1995, J. Nucl. Mater. 241-243 408–413.

    CAS  Google Scholar 

  7. M. Rubel, J. Von Seggern, P. Karduck, V. Philipps, A. Vevecka-Priftaj. (1999) Analysis and oxidation of thick deposits on TEXTOR plasma-facing components, J. Nucl. Mater. 266-269 1185–1193.

    Article  CAS  Google Scholar 

  8. D.G. Whyte, et al., DiMES divertor erosion experiments in DIII-D, J. Nucl. Mater. 241-243 (1997) 660–667.

    CAS  Google Scholar 

  9. K. Krieger, et al. (1997) Study of gross and net erosion in the ASDEX-Upgrade divertor, J. Nucl. Mater. 241-243 684–691.

    CAS  Google Scholar 

  10. V. Rohde, H., Maier, K., Krieger, R., Neu, J., Perchermaier. (2001) Carbon layers in the divertor of ASDEX-Upgrade, J. Nucl. Mater. 290-293 317–324.

    Article  CAS  Google Scholar 

  11. R. Reichle, et al. (2001) Thermography of target plates with near infrared optical fibres at Tore Supra, J. Nucl. Mater. 290-293 701–709.

    Article  CAS  Google Scholar 

  12. D. Summers, et al. (2001) In-situ measurement of hydrogen retention in JET carbon tiles, J. Nucl. Mater. 290-293 496–503.

    Article  CAS  Google Scholar 

  13. M.M. Menon, et al. (1999) Study of the surface features on the TFTR inner limiter using a frequency modulated coherent laser radar device devloped for ITER, in Proc. 18th IEEE/NPSS Symp. on Fus. Eng. (Albuquerque, Oct. 6–10, 1999), Ed. IEEE, Piscataway—New Jersey, IEEE 99CH3705 pp. 261–268.

    Google Scholar 

  14. R.C. Isler. (1984) Impurities in tokamaks, Nucl. Fusion 24 1599–1607.

    Article  CAS  Google Scholar 

  15. R. Neu, et al. (2001) Plasma operation with tungsten tiles at the central column of the ASDEX-Upgrade, J. Nucl. Mater. 290-293 206–211.

    Article  CAS  Google Scholar 

  16. F. Brech and L. Cross. (1962) Optical microemission stimulated by a ruby laser, Appl. Spectrosc. 16 59–64.

    Google Scholar 

  17. R.S. Adrain and J. Watson. (1984) Laser microspectral analysis: a review of principles and applications, J. Phys. D: Appl. Phys. 17 1915–1921.

    Article  CAS  Google Scholar 

  18. D.A. Rusak, B.C. Castle, B.W. Smith and J.D. Winefordner (1997) Fundamentals and applications of laser-induced breakdown spectroscopy, Critical reviews in analytical chemistry, 27 257–264.

    Article  CAS  Google Scholar 

  19. K. Song, Y.I. Lee and J. Sneddon. (1997) Applications of laser-induced breakdown spectroscopy, Appl. Spectrosc. Rev. 32 183–190

    Article  CAS  Google Scholar 

  20. O.B. Anan’in, Yu.A. Bykovsky, E.L. Stupitsky, A.M. Khudaverdyan. (1987) Shock wave structure of the laser plasma expanding in rarefied gas, Kvantovaya electonica (Quantum Electronics, Sov.) 14 2313–2319

    CAS  Google Scholar 

  21. J.P. Coad, et al., Erosion/deposition issues at JET. (2001) J. Nucl. Mater. 290-293 224–231.

    Article  CAS  Google Scholar 

  22. V.I. Luchin, (1980) Izvestiya vuzov, Radiofisika (Proc. High Education Schools Radiophysics, Sov.) 23, 176–181.

    Google Scholar 

  23. A.G. Gaydon. (1957) The spectroscopy of flames, London, Chapman and Hall Ltd,.

    Google Scholar 

  24. L. De Kock, et al., (1998) Diagnostic requirements for the ITER divertor, in P.E. Stott et al (eds.) Diagnostics for Experimental Thermonuclear Fusion Reactors 2, Plenum Press, New York and London p. 67–73.

    Chapter  Google Scholar 

  25. A. von Engel. (1994) Ionized gases, American Institute of Physics, New York

    Google Scholar 

  26. C.I. Walker, et al. (1998) Diagnostic access for ITER, in P.E. Stott et al (eds) Diagnostics for Experimental Thermonuclear Fusion Reactors 2, Plenum Press, New York and Londonp. 57–63.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kozhevin, V.M., Mukhin, E.E., Razdobarin, G.T., Semenov, V.V., Tolstyakov, S.Y., Federici, G. (2002). Laser Induced Breakdown Spectroscopy Technique For In-Situ Dust Detecting In A Next-Step Tokamak. In: Hassanein, A. (eds) Hydrogen and Helium Recycling at Plasma Facing Materials. NATO Science Series, vol 54. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0444-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0444-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0512-1

  • Online ISBN: 978-94-010-0444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation