Origin of new genes: evidence from experimental and computational analyses

  • Chapter
Origin and Evolution of New Gene Functions

Abstract

Exon shuffling is an essential molecular mechanism for the formation of new genes. Many cases of exon shuffling have been reported in vertebrate genes. These discoveries revealed the importance of exon shuffling in the origin of new genes. However, only a few cases of exon shuffling were reported from plants and invertebrates, which gave rise to the assertion that the intron-mediated recombination mechanism originated very recently. We focused on the origin of new genes by exon shuffling and retroposition. We will first summarize our experimental work, which revealed four new genes in Drosophila, plants, and humans. These genes are 106 to 108 million years old. The recency of these genes allows us to directly examine the origin and evolution of genes in detail. These observations show firstly the importance of exon shuffling and retroposition in the rapid creation of new gene structures. They also show that the resultant chimerical structures appearing as mosaic proteins or as retroposed coding structures with novel regulatory systems, often confer novel functions. Furthermore, these newly created genes appear to have been governed by positive Darwinian selection throughout their history, with rapid changes of amino acid sequence and gene structure in very short periods of evolution. We further analyzed the distribution of intron phases in three non-vertebrate species, Drosophila melanogaster, Caenorhabditis elegans, and Arabidosis thaliana, as inferred from their genome sequences. As in the case of vertebrate genes, we found that intron phases in these species are unevenly distributed with an excess of phase zero introns and a significant excess of symmetric exons. Both findings are consistent with the requirements for the molecular process of exon shuffling. Thus, these non-vertebrate genomes may have also been strongly impacted by exon shuffling in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
GBP 9.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adams, M.D., S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. Amanatides, S.E. Scherer, P.W. Li, R.A. Hoskins, R.F. Galle, et al., 2000. The genome sequence of Drosophila melanogaster. Science 287(5461): 2185–2195.

    Article  PubMed  Google Scholar 

  • AGI (The Arabidopsis Genome Initiative), 2000. Analysis of the genome sequence of the flowering plant. Nature 408: 796–815.

    Article  Google Scholar 

  • Attwood, T.K., 2000. The Babel of bioinformatics. Science 290: 471–473.

    Article  PubMed  CAS  Google Scholar 

  • Begun, D.J., 1997. Origin and evolution of a new gene descended from alcohol dehydrogenase in Drosophila. Genetics 145: 375–382.

    PubMed  CAS  Google Scholar 

  • Betrán, E. & M. Long, 2002. Expansion of genome coding regions by acquisition of new genes. Genetica 115: 65–80.

    Article  PubMed  Google Scholar 

  • Betrán, E., W. Wang, L. ** & M. Long, 2002. Evolution of the phos-phoglycerate mutase processed gene in human and chimpanzee revealing the origin of a new primate gene. Mol. Biol. Evol. 19: 654–663.

    Article  PubMed  Google Scholar 

  • Boeke, J.D. & O.K. Pickeral, 1999. Retroshuffling the genomic deck. Nature 398: 108–109, 111.

    Article  PubMed  CAS  Google Scholar 

  • Brookfield, J.F. & P.M. Sharp, 1994. Neutralism and selectionism face up to DNA data. Trends Genet. 10: 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J., 1999. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene 238: 115–134.

    Article  PubMed  CAS  Google Scholar 

  • Brosius, J., 2003. The contribution of RNAs and retroposition to evolutionary novelties. Genetica 118: 99–115.

    Article  PubMed  CAS  Google Scholar 

  • Burks, C, M.J. Cinkosky, P. Gilna, J.E. Hayden, Y. Abe, E.J. Atencio, S. Barnhouse, D. Benton, C.A. Buenafe & K.E. Cumella, 1990. GenBank: current status and future directions. Meth. Enzymol. 183: 3–22.

    Article  PubMed  CAS  Google Scholar 

  • Cerff, R., 1995. The chimeric nature of nuclear genoms and the antiquity of introns as demonstrated by the GAPDH gene system, pp. 205–228 in Tracing Biological Evolution in Protein and Gene Structures, edited by M. Go & P. Schimmel. Elsevier, Amsterdam.

    Google Scholar 

  • CESC (The C. elegans Sequencing Consortium), 1998. Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282: 2012–2018.

    Article  Google Scholar 

  • Chen, J.J., B.J. Janssen, A. Williams & N. Sinha, 1997. A gene fusion at a homeobox locus: alterations in leaf shape and implications for morphological evolution. Plant Cell 9: 1289–1304.

    PubMed  CAS  Google Scholar 

  • De Souza, S.J., M. Long, R.J. Klein, S. Roy, S. Lin & W. Gilbert, 1998. Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. Proc. Natl. Acad. Sci. USA 95: 5094–5099.

    Article  PubMed  Google Scholar 

  • De Souza, S.J., M. Long, L. Schoenbach, S.W. Roy & W. Gilbert, 1996. Intron positions correlate with module boundaries in ancient proteins. Proc. Natl. Acad. Sci. USA 93: 14632–14636.

    Article  PubMed  Google Scholar 

  • Dierick, H.A., J.F.B. Mercer & T.W. Glover, 1997. A phosphoglycerate mutase brain isoform (PGAM1) pseudogene is localized within the human Menkes disease gene (ATP7A). Gene 198: 37–41.

    Article  PubMed  CAS  Google Scholar 

  • Domon, C. & A. Steinmetz, 1994. Exon shuffling in anther-specific genes from sunflower. Mol. Gen. Genet. 244: 312–317.

    Article  PubMed  CAS  Google Scholar 

  • Dorit, R.L., L. Schoenbach & W. Gilbert, 1991. How big is the universe of exons? Science 250: 1377–1382.

    Article  Google Scholar 

  • Eddy, S.R., 2001. Non-coding RNA genes and the modern RNA world. Nat. Rev. Genet. 2: 919–929.

    Article  PubMed  CAS  Google Scholar 

  • Fedorov, A., L. Fedorova, V. Starshenko, V. Filatov & E. Grigor’ev, 1998. Influence of exon duplication on intron and exon phase distribution. J. Mol. Evol. 46: 263–271.

    Article  PubMed  CAS  Google Scholar 

  • Fedorov, A., G. Suboch, M. Bujakov & L. Fedorova, 1992. Analysis of nonuniformity in intron phase distribution. Nucl. Acids Res. 20(10): 2553–2557.

    Article  PubMed  CAS  Google Scholar 

  • Fraser, C.M., J.D. Gocayne, O. White, M.D. Adams, R.A. Clayton, R.D. Fleischmann et al., 1995. The minimal gene complement of Mycoplasma. Science 270: 397–403.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1978. Why gene in pieces? Nature 271(5645): 501.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., 1987. The exon theory of genes. Cold Spring Harb. Symp. Quant. Biol. 52: 901–905.

    Article  PubMed  CAS  Google Scholar 

  • Gilbert, W., S.J. de Souza & M. Long, 1997. Origin of genes. Proc. Natl. Acad. Sci. USA 94: 7698–7703.

    Article  PubMed  CAS  Google Scholar 

  • Goodman, M., C.A. Porter, J. Czelusniak, S.L. Page, H. Schneider, J. Shoshani, G. Gunnell & C.P. Groves, 1998. Toward a phylo-genetic classification of primates based on DNA evidence complemented by fossil evidence. Mol. Phyl. Evol. 9: 585–598.

    Article  CAS  Google Scholar 

  • Grisolia, S. & B.K. Joyce, 1959. Distribution of two types of phosphoglyceric acid mutase, diphosphoglycerate mutase and D-2, 3-dipphosphoglyceric acid. J. Biol. Chem. 234, 6: 1335–1337.

    PubMed  CAS  Google Scholar 

  • Grisolia, S. & J. Carreras, 1975. Phosphoglycerate mutase from Yeast, chicken, breast muscle and kidney (2,3-PGA-dependent). Meth. Enzymol. 42: 435–450.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Z., A. Cavalcanti, F.C Chen, P. Bouman & W.H. Li, 2002. Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. Mol. Biol. Evol. 19: 256–262.

    Article  PubMed  CAS  Google Scholar 

  • Himmelreich, R., H. Hilbert, H. Plagens, E. Pirkl, B.C. Li & R. Herrmann, 1996. Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae Nucl. Acids Res. 24: 4420–4449.

    Article  CAS  Google Scholar 

  • Horowitz, D.S. & A.R. Krainer, 1994. Mechanisms for selecting 5′ splice sites in mammalian pre-mRNA splicing. Trends Genet. 10: 100–106.

    Article  PubMed  CAS  Google Scholar 

  • Jeffs, P. & M. Ashburner, 1991. Processed pseudogenes in Drosophila. Proc. R. Soc. Lond. B. 244: 151–159.

    Article  Google Scholar 

  • Kaessmann, H., S. Zöllner, A. Nekrutenko & W.H. Li, 2002. Signatures of domain shuffling in the human genome. Genome Res. 12: 1642–1650.

    Article  PubMed  CAS  Google Scholar 

  • Lander, et al., 2001. Initial sequencing and analysis of the human genome. Nature 409: 860–921.

    Article  PubMed  CAS  Google Scholar 

  • Langley, C.H., E. Montgomery & W.F. Quattlebaum, 1982. Restriction map variation in the Adh region of Drosophila. Proc. Natl. Acad. Sci. USA 79: 5631–5635.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., 2001. Evolution of novel genes. Curr. Opin. Genet. Dev. 11:673–680.

    Article  PubMed  CAS  Google Scholar 

  • Long, M. & M. Deutsch, 1999. Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. Mol. Biol. Evol. 16: 1528–1534.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., W. Wang & J. Zhang, 1999. Origin of new genes and source for N-terminal domain of the chimerical gene, **gwei, in Drosophila. Gene 238: 135–141.

    Article  PubMed  CAS  Google Scholar 

  • Long, M. & C. Rosenberg, 2000. Testing the “proto-splice sites” model of intron origin: evidence from analysis of intron phase correlations. Mol. Biol. Evol. 17: 1789–1796.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., C. Rosenberg & W. Gilbert, 1995. Intron phase correlations and the evolution of the intron/exon structure of genes. Proc. Natl. Acad. Sci. USA 92(26): 12495–12499.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., S.J. de Souza & W. Gilbert, 1995. Evolution of intron/exon structure of eukaryotic genes. Curr. Opin. Genet. Dev. 5: 774–778.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., S.J. de Souza, C. Rosenberg & W. Gilbert, 1996. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Proc. Natl. Acad. Sci. USA 93: 7727–7731.

    Article  PubMed  CAS  Google Scholar 

  • Long, M., S.J. de Souza, C. Rosenberg & W. Gilbert, 1998. Relationship between “proto-splice sites” and intron phases: evidence from dicodon analysis. Proc. Natl. Acad. Sci. USA 95: 219–223.

    Article  PubMed  CAS  Google Scholar 

  • Long, M. & C.H. Langley, 1993. Natural selection and the origin of **gwei, a chimeric processed functional gene in Drosophila. Science 260: 91–95.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., 2002. Intron evolution as a population-genetic process. Proc. Natl. Acad. Sci. USA 99: 6118–6123.

    Article  PubMed  CAS  Google Scholar 

  • Nugent, J.M. & J.D. Palmer, 1991. RNA-mediated transfer of the gene coxll from the mitochondrion to the nucleus during flowering plant evolution. Cell 66: 473–481.

    Article  PubMed  CAS  Google Scholar 

  • Nurminsky, D.I., M.V. Nurminskaya, D. De Aguiar & D.L. Haiti, 1998. Selective sweep of a newly evolved sperm-specific gene in Drosophila. Nature 396: 572–575.

    Article  PubMed  CAS  Google Scholar 

  • Ohno, S., 1970. Evolution by Gene Duplication. Springer, New York.

    Google Scholar 

  • Palmer, J.D., 1985. Comparative organization of chloroplast genomes. Annu. Rev. Genet. 19: 325–354.

    Article  PubMed  CAS  Google Scholar 

  • Patthy, L., 1987. Intron-dependent evolution: preferred types of exons and introns. FEBS Lett. 214: 1–7.

    Article  PubMed  CAS  Google Scholar 

  • Patthy, L., 1991. Modular exchange principles in proteins. Curr. Opin. Struct. Biol. 1: 351–361.

    Article  CAS  Google Scholar 

  • Patthy, L., 1995. Protein Evolution by Exon-shuffling. Molecular biology intelligence unit, edited by R.G. Landes. Springer, Austin, TX.

    Google Scholar 

  • Pearson, W.R., 1994. Using the FASTA program to search protein and DNA sequence databases. Meth. Mol. Biol. 24: 307–331.

    CAS  Google Scholar 

  • Reed, R., 1996. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr. Opin. Genet. Dev. 6: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Roise, D., S.J. Horvath, J.M. Tomich, J.H. Richards & G. Schatz, 1986. A chemically synthesized pre-sequence of an imported mitochondrial protein can form an amphiphilic helix and perturb natural and artificial phospholipid bilayers. EMBO J. 5: 1327–1334.

    PubMed  CAS  Google Scholar 

  • Rubin, G.M., M.D. Yandell, J.R. Wortman, G.L. Gabor Miklos, C.R. Nelson, I.K. Hariharan et al., 2000. Comparative genomics of the eukaryotes. Science 287: 2204–2215.

    Article  PubMed  CAS  Google Scholar 

  • Schatz, G. & B. Dobberstein, 1996. Common principles of protein translocation across membranes. Science 271: 1519–1526.

    Article  PubMed  CAS  Google Scholar 

  • Stoltzfus, A., J.M. Logsdon Jr., J.D. Palmer & W.F. Doolittle, 1997. Intron “sliding” and the diversity of intron positions. Proc. Natl. Acad. Sci. USA 94: 10739–10744.

    Article  PubMed  CAS  Google Scholar 

  • Venter, J.C. et al., 2001. The sequence of the human genome. Science 291: 1304–1351.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., J. Zhang, C. Alvarez, A. Llopart & M. Long, 2000. The origin of the **gwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Mol. Biol. Evol. 17: 1294–1301.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., F.G. Brunet, E. Nevo & M. Long, 2002a. Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 99: 4448–4453.

    Article  PubMed  CAS  Google Scholar 

  • Wang, W., K. Thornton, A. Berry & M. Long, 2002b. Nucleotide variation along the Drosophila melanogaster fourth chromosome. Science 295: 134–137.

    Article  PubMed  CAS  Google Scholar 

  • Wegener, S. & U.K. Schmitz, 1993. The presequence of cytochrome c1 from potato mitochondria is encoded on four exons. Curr. Genet. 24: 256–259.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

M. Long

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Long, M., Deutsch, M., Wang, W., Betrán, E., Brunet, F.G., Zhang, J. (2003). Origin of new genes: evidence from experimental and computational analyses. In: Long, M. (eds) Origin and Evolution of New Gene Functions. Contemporary Issues in Genetics and Evolution, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0229-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0229-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3982-6

  • Online ISBN: 978-94-010-0229-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation