Part of the book series: NATO Science Series ((NAII,volume 122))

  • 280 Accesses

Abstract

In the last decade, rhodium complexes are increasingly used as catalysts for a preparation of specialty polymers of diverse functionality, since a use of them brings about important advantages. Rh-catalysts (i) show unusually high tolerance to the reaction surroundings as well as to functional groups of reactants and products, (ii) they often show a precise control of the configurational structure of formed macromolecules (particularly those of polyvinylenes), (iii) they can be transformed to the living polymerization systems, (iv) they can be anchored on various inorganic and organic supports to give effective heterogeneous catalysts, and (v) they can catalyze reactions in the ionic liquid systems. Rhodium complexes are prevailingly used for a preparation of stereoregular (head-to-tail, cis-transoid) polymers of monosubstituted acetylenes, molecules of which easily adopt the helical conformation in the solid state, some of them even in solutions (e.g., molecules of poly(propiolate)s). In addition to it, Rh-complexes are nowadays used as catalysts of (i) atom transfer radical polymerization, (ii) polymerization of arylallenes taking place exclusively via 2,3-addition mode and copolymerization of allenes with carbon monooxide to give alternating copolymers, (iii) cross-dehydrocoupling polymerization of dihydrosilanes and bis(hydrosilane)s with diols, disilanols and dithiols, (iv) silylative coupling polymerization of bis(vinylsilane)s, (v) hydrosilylative addition copolymerization of bis(silane)s and diethynyl monomers, and (vi) ring-opening polymerization of silaferrocenophanes and 1,3-disilacyclobutanes. In spite of a high synthesis potential, a practical application of these expensive catalysts in a medium-to-large scale production of polymers depends on successful solving of questions related to their effective and reliable recycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cornils B., Herrmann W.A., Schögl R., Wong C.H. (2000) Catalysis from A to Z. A Concise Encyclopedia, Wiley-VCH: Weinheim.

    Google Scholar 

  2. Crivello J.V., Fan M. (1992) Regioselective rhodium-containing catalysts for ring-opening polymerizations and hydrosilylations, J. Polym. Sci. Polym. Chem. 30, 1–11.

    CAS  Google Scholar 

  3. Biffis A., Castello E., Zecca M., Basato M. (2001) Fluorous biphasic catalysis with dirhodium(II) perfluorocarboxylates: selective silylation of alcohols under fluorous biphasic conditions, Tetrahedron 57, 10391–10394.

    CAS  Google Scholar 

  4. Murai S., Sugise R., Sonoda N. (1981) [(-)-Diop]RhCl-catalyzed asymmetric addition of bromotrichloromethane to styrene, Angew. Chem., Int. Ed. Engl. 20, 475–476.

    Google Scholar 

  5. Solymosi F., Erdöhelyi A. (1980) Methanation of CO2 on supported rhodium catalyst, in T. Seiyama and K. Tanabe (eds.) New Horizons in Catalysis, Studies in Surface Science and Catalysis 7B, Elsevier, Amsterdam, pp. 1448–1449.

    Google Scholar 

  6. Bertani R., Michelin R.A., Mozzon M., Sassi A., Basato M., Biffis A., Martinati G., Zecca M. (2001) Catalytic activity of dicationic platinum(II) and rhodium (II) complexes towards 9-diazafluorene, Inorg. Chem. Commun. 4, 281–284.

    CAS  Google Scholar 

  7. Cooper W. (1976) Kinetics of polymerization initiated by Ziegler-Natta and related catalysts, Chapter 3 in C.H. Bamford and C.F.H. Tipper (eds.), Comprihensive Chemical Kinetics, Vol. 15, Non-Radical Polymerization, Elsevier, Amsterdam, pp. 133–257.

    Google Scholar 

  8. Furlani A, Napoletano C, Russo M.V., Feast W.J. (1986) Stereoregular polyphenylacetylene, Polym. Bull. 16, 311–317.

    CAS  Google Scholar 

  9. Furlani A., Licoccia S., Russo M.V., Camus A., Marsich N. (1986) Rhodium and platinum complexes as catalysts for the polymerization of phenylacetylene, J. Polym. Sci. A-Pol. Chem. 24, 991–1005.

    CAS  Google Scholar 

  10. Furlani A., Napoletano C., Russo M.V., Camus A., Marsich N. (1989) The influence of the ligands on the catalytic activity of a series of Rh(I) complexes in reactions with phenylacetylene-synthesis of stereoregular poly(phenyl) acetylene, J. Polym. Sci. Polym. Chem. 27, 75–86.

    CAS  Google Scholar 

  11. Lindgren M., Lee H.S., Yang W., Tabata M., Yokota K. (1991) Synthesis of soluble polyphenyl-acetylenes containing a strong donor function, Polymer 32, 1531–1534.

    CAS  Google Scholar 

  12. Tabata M., Yang W., Yokota K. (1990) Polymerization of meta-chlorophenylacetylene initiated by [Rh(norbornadiene)Cl]2-triethylamine catalyst containing long-lived propagation species, Polym. J. 22, 1105–1107.

    CAS  Google Scholar 

  13. Furlani A., Paolesse R., Russo M.V., Camus A., Marsich N. (1987) Polymerization of N-benzyl-propargylamine in the presence of ionic rhodium(I) complexes-A new functionalized polyacetylene-investigation of its conducting properties, Polymer 28 1221–1226.

    CAS  Google Scholar 

  14. Goldberg Y., Alper H. (1994) Polymerization of phenylacetylene catalyzed by a zwitterionic rhodium(I) complex under hydrosilylation conditions, J. Chem. Soc., Chem. Commun. 1209–1210.

    Google Scholar 

  15. Tabata M., Yang W., Yokota K. (1994) 1H-NMR and UV studies of Rh complexes as a stereoregular polymerization catalysts for phenylacetylenes-effects of ligands and solvents on its catalyst activity J. Polym. Sci. Polym. Chem. 32, 1113–1120.

    CAS  Google Scholar 

  16. Shirakawa H., Masuda T., Takeda K. (1994) Synthesis and properties of acetylenic polymers, in S. Patai, ed., The Chemistry of Tripple-Bonded Functional Groups; Supplement C2, Wiley New York, Chapter 17, pp. 945–1016.

    Google Scholar 

  17. Kishimoto Y., Eckerle P., Miyatake T., Kainosho M., Ono A., Ikariya T., Noyori R. (1999) Well-controlled polymerization of phenylacetylenes with organorhodium(I) complexes: Mechanism and structure of the polyenes, J. Am. Chem. Soc. 121, 12035–12044.

    CAS  Google Scholar 

  18. Percec V., Rudick J.G., Nombel P., Buchowicz W. (2002) Dramatic decrease of the cis content and molecular weight of cis-transoidal polyphenylacetylene at 23 °C in solutions prepared in air, J. Polym. Sci. Pol. Chem. 40, 3212–3220.

    CAS  Google Scholar 

  19. Mastrorilli P., Nobile C.F., Rizzuti A., Suranna G.P., Acierno D., Amendola E. (2002) Polymerization of phenylacetylene and of p-tolylacetylene catalyzed by μ-dioxygenato rhodium(I) complexes in homogeneous and heterogeneous phase, J. Mol. Cat. A-Chem. 178, 35–42.

    CAS  Google Scholar 

  20. Sone T., Asako R., Masuda T., Tabata M., Wada T., Sasabe H. (2001) Polymerization of o-trifluoro-methyl(phenylacetylene) initiated by [Rh(norbornadiene)Cl]2 and MoOCl4-n-Bu4Sn-EtOH catalysts. Formation of order and disorder trans sequences, Macromolecules 34, 1586–1592.

    CAS  Google Scholar 

  21. Duc S., Petit A. (1997) Microstructure characterization of acetylenic polymers by Curie-point pyrolysis capillary gas chromatography mass spectrometry, J. Anal. Appl. Pyrol. 4041, 55–68.

    Google Scholar 

  22. Kishimoto Y., Eckerle P., Miyatake T., Ikariya T., Noyori R. (1994) Living polymerization of phenylacetylenes initiated by Rh(C=CC6H5)(2,5-norbornadiene) [P(C6H5)3]2, J. Am. Chem. Soc. 119, 12131–12132.

    Google Scholar 

  23. Kishimoto Y., Miyatake T., Ikariya T., Noyori R. (1996) An efficient rhodium(I) initiator for stereospecific living polymerization of phenylacetylenes, Macromolecules 29, 5054–5055.

    CAS  Google Scholar 

  24. Hirao K., Ishii Y., Terao T., Kishimoto Y., Miyatake T., Ikariya T., Noyori R. (1996) Solid state NMR study of poly(phenylacetylene) synthetized with a rhodium complex initiator, Macromolecules 31, 3405–3408.

    Google Scholar 

  25. Misumi Y., Masuda T. (1998) Living polymerization of phenylacetylene by novel rhodium catalysts. Quantitative initiation and introduction of functional groups at the initiating chain end, Macromolecules 31, 7572–7573.

    CAS  Google Scholar 

  26. Misumi Y., Kanki K., Miyake M., Masuda T. (2000) Living polymerization of phenylacetylene by rhodium-based ternary catalysts, (diene)Rh(I) complex/vinyllithium/phosphorus ligand. Effects of catalyst components, Macromol. Chem. Phys. 201, 2239–2244.

    CAS  Google Scholar 

  27. Isomura M., Misumi Y., Masuda T. (2000) Living polymerization and block copolymerization of various ring-substituted phenylacetylenes by rhodium-based ternary catalyst, Polym. Bull. 45, 335–339.

    CAS  Google Scholar 

  28. Miyake M., Misumi Y., Masuda T. (2000) Living polymerization of phenylacetylene by isolated rhodium complexes, Rh[C(C6H5)=C(C6H5)2](nbd)(4-X-C6H4)3P (X = F, Cl), Macromolecules 31, 6636–6639.

    Google Scholar 

  29. Falcon M., Farnetti E., Marsich N. (2001) Stereoselective living polymerization of phenylacetylene promoted by rhodium catalysts with bidentate phosphines, J. Organomet. Chem. 629, 187–193.

    CAS  Google Scholar 

  30. Balcar H., Sedláček J., Zedník J., Blechta V., Kubát P., Vohlídal J. (2001) Polymerization of isomeric N-(4-substituted benzylidene)-4-ethynylanilines and 4-substituted N-(ethynylbenzylideneanilines) by transition metal catalysts. Preparation and characterization of new substituted polyacetylenes with aromatic Schiff-base pendant groups, Polymer 42, 6709–6721.

    CAS  Google Scholar 

  31. Vohlídal J., Rédrová D., Pacovská M., Sedláček J. (1993) Autooxidative Degradation of Poly(phenylacetylene), Collect. Czech. Chem. Commun. 58, 2651–2662.

    Google Scholar 

  32. Sedlácek J., Vohlídal J., Grubušic-Gallot Z., (1993) Molecular-weight determination of poly(phenyl-acetylene) by size exclusion chromatography/low-angle laser light scattering. Influence of polymer degradation, Makro mol. Chem. Rapid Commun. 14, 51–53.

    Google Scholar 

  33. Karim A.S.M., Nomura R., Masuda T. (2001) Degradation behavior of stereoregular cis-transodial poly(phenylacetylene), J. Polym. Sci. Polym. Chem. 39, 3130–3136.

    CAS  Google Scholar 

  34. Vohlídal J., Sedláček J. (1999) Degradation of substituted polyacetylenes and effect of this process on SEC analysis of these polymers, in T. Provder ed., Chromatography of Polymers: Hyphenated and Multidimensional Techniques, ACS Symposium Series, Volume 731, Washington 1999, Chapter 19, pp. 263–287.

    Google Scholar 

  35. Vohlídal J., Kabátek Z., Pacovská M., Sedláček J., Grubišic-Gallot Z. (1996) Size exclusion chromatography of substituted acetylene polymers. Effect of autoxidative degradation of the polymer during analysis, Collect. Czech. Chem. Commun. 61, 120–125.

    Google Scholar 

  36. Sedlâcek J., Pacovskâ M., Etrych T., Dlouhy M., Patev N., Cabioch S., Lavastre O., Balcar H., Zigon M., Vohlidal J. (1997) SEC study of autoxidative degradation of substituted acetylene polymers, Polym. Mater. Sci. Eng. 77, 52–53.

    Google Scholar 

  37. Kabátek Z., Gaš B., Vohlídal J. (1997) Size exclusion chromatography of polymers degrading randomly in SEC column. theoretical treatment, J. Chromatogr. A, 786, 209–218.

    Google Scholar 

  38. Kishimoto Y., Itou M., Miyatake T., Ikariya T., Noyori R. (1995) Polymerization of monosubstituted acetylenes with a zwitterionic rhodium(I) complex, Rh+(2,5-norbornadiene)[(η6-C6H5)-B-(C6H5)3], Macromolecules 28, 6662–6666.

    CAS  Google Scholar 

  39. Escudero A., Vilar R., Salcedo R., Ogawa T. (1995) Effects of substituent groups and substituted benzenes in the polymerization of phenylacetylenes initiated by di-μ-pentafluorothiophenolate bis(l,5-cyclooctadiene) rhodium(I), Eur. Polym. J. 31, 1135–1138.

    CAS  Google Scholar 

  40. Balcar H., Sedláček J., Čejka J., Vohlídal J. (2002) MCM-41 Immobilized Rh(cod)(OCH3)]2 complex-a hybrid catalyst for polymerization of phenylacetylene and its ring-substituted derivatives, Macromol. Rapid Commun. 23, 32–37.

    CAS  Google Scholar 

  41. Sedláček J., Pacovská M., Rédrová D., Balcar H., Biffis A., Corain B., Vohlídal J., (2002) Polybenzimidazole-supported [Rh(cod)Cl]2 complex: Effective catalyst for the polymerization of substituted acetylenes, Chem. Eur. J. 8, 366–371.

    Google Scholar 

  42. Yashima E., Huang S., Matsushima T., Okamoto Y. (1995) Synthesis and conformational study of optically active poly(phenylacetylene) derivatives bearing a bulky substituent, Macromolecules, 28, 4184–4193.

    CAS  Google Scholar 

  43. Tabata M., Sone T., Sadahiro Y., Yokota K., Nozaki Y. (1998) Pressure-induced cis to trans isomerization of aromatic polyacetylenes prepared using a Rh complex catalyst: A control of π-conjugation length, J. Polym. Sci. Polym. Chem. 36, 217–223.

    CAS  Google Scholar 

  44. Vohlídal J., Sedláček J., Patev N., Pacovská M., Lavastre O., Cabioch S., Dixneuf P.H., Blechta V., Matějka P., Balcar H. (1998) Comparative study of polymerization of 2-, 3-and 4-iodophenyl-acetylenes with Rh-, Mo-and W-based catalysts, Collect. Czech. Chem. Commun. 63, 1815–1838.

    Google Scholar 

  45. Balcar H., Sedláček J., Zedník J., Vohlídal J., Blechta V. (2002) Polymerization of unconventional monosubstituted acetylenes with metathesis and insertion catalysts, in E. Khosravi and T. Szymanska-Buzar eds., Ring Opening Metathesis Polymerization and Related Chemistry, Kluwer Academic Publishers, Amsterdam, pp. 417–424.

    Google Scholar 

  46. Russo M.V., Furlani A., D’Amato R. (1998) Synthesis and properties of p-nitrophenylacetylene-phenylacetylene copolymers, J. Polym. Sci. Polym. Chem. 36, 93–102.

    CAS  Google Scholar 

  47. Tang B.Z., Kong X., Wan X., Feng X.-D. (1997) Synthesis and properties of stereoregular polyacetylenes containing cyano groups, poly[[4-[[[n-[(4′cyano-4-biphenylyl)oxy]alkyl]oxy]carbonyl]-phenyl]acetylenes], Macromolecules, 1997, 5620–5628.

    Google Scholar 

  48. Vohlídal J., Sedláček J., Patev N., Lavastre O., Dixneuf P.H., Cabioch S., Balcar H., Pfleger J., Blechta V. (1999) New substituted polyacetylenes with phenyleneethynylene side groups [-(C6H4-C≡C)n-SiiPr3; n = 1, 2]: Synthesis, characterization, spectroscopic and photoelectric properties; Macromolecules, 32, 6439–6449.

    Google Scholar 

  49. Lavastre O., Cabioch S., Dixneuf P.H., Sedláček J., Vohlídal J. (1999) New route to conjugated polymer networks: Synthesis of poly(4-ethynylphenylacetylene) and its transformation into conjugated network, Macromolecules, 32, 4477–4481.

    CAS  Google Scholar 

  50. Kaneko T., Horie T., Asano M., Aoki T., Oikawa E. (1997) Polydendron: Polymerization of dendritic phenylacetylene monomers, Macromolecules, 30, 3118–3121.

    CAS  Google Scholar 

  51. Balcar H., Sedláček J, Vohlídal J, Zednik J., Blechta V. (1999) New polyacetylenes with aromatic Schiffs base pendant groups by polymerization of benzylidene-ring-substituted N-benzylidene-4-ethynylanilines with Rh-based catalysts, Macromol. Chem. Phys. 200, 2591–2596.

    CAS  Google Scholar 

  52. Teraguchi M., Masuda T. (2000) Synthesis and properties of polyacetylenes having azobenzene pendant groups, Macromolecules, 33, 240–242.

    CAS  Google Scholar 

  53. Sedláček J., Vohlídal J., Patev N., Pacovská M., Cabioch S., Lavastre O., Dixneuf P.H., Balcar H., Matějka P. (1999) Polymerization of 4-(ferrocenylethynyl)phenylacetylene with transition metal catalysts, Macromol Chem. Phys. 200, 972–976.

    Google Scholar 

  54. Tabata M., Yokota K., Namioka M. (1995) An electron-spin-resonance study of poly(alpha-ethynylnaphthalene) polymerized with [Rh(norbornadiene)Cl]2 and WCl6 as catalysts, Macromol. Chem. Phys. 196, 2969–2977.

    CAS  Google Scholar 

  55. Tang B.Z., Poon W.H., Leung S.M., Leung W.H., Peng H. (1997) Synthesis of stereoregular poly(phenylacetylene)s by organorhodium complexes in aqueous media, Macromolecules, 30, 2209–2212.

    CAS  Google Scholar 

  56. Kwak G., Masuda T. (2002) Poly(phenylacetylene) with bulky chiral germyl groups: synthesis and effects of measuring solvents and temperature on chiroptical properties, Polymer, 43, 665–669.

    CAS  Google Scholar 

  57. Kwak G., Masuda T. (2000) Synthesis, chiroptical properties, and high gas permeability of poly(phenylacetylene) with bulky chiral silyl groups, Macromolecules, 33, 6633–6635.

    CAS  Google Scholar 

  58. Katayama H., Yamamura K., Miyaki Y., Ozawa F. (1997) Stereoregular polymerization of phenyl-acetylenes catalyzed by [hydridotris(pyrazolyl)borato]rhodium(I) complexes, Organometallics, 16, 4497–4500.

    CAS  Google Scholar 

  59. Karim S.M.A., Nomura R., Masuda T. (2002) Synthesis and properties of polyacetylenes with salicylideneaniline groups, J. Polym. Sci. Polym. Chem. 40, 2458–2463.

    CAS  Google Scholar 

  60. Ochiai B., Tomita L, Endo T. (2001) Coordination polymerization of a conjugated enyne: Synthesis of a novel polyacetylene derivative bearing conjugated double bond moieties, Macromol. Rapid Commun., 22, 1485–1487.

    CAS  Google Scholar 

  61. Nakako H., Nomura R., Tabata M., Masuda T. (1999) Synthesis and structure in solution of poly[(-)-menthylpropiolate] as a new class of helical polyacetylene, Macromolecules, 32, 2861–2864.

    CAS  Google Scholar 

  62. Maeda K., Goto H., Yashima E. (2001) Stereospecific polymerization of propiolic acid with rhodium complexes in the presence of bases and helix induction on the polymer in water, Macromolecules 34, 1160–1164.

    CAS  Google Scholar 

  63. Lam J.W.Y., Luo J.D., Dong Y.P., Cheuk K.K.L., Tang B.Z. (2002) Functional polyacetylenes: Synthesis, thermal stability, liquid crystallinity, and light emission of polypropiolates, Macromolecules, 35, 8288–8299.

    CAS  Google Scholar 

  64. Nomura R., Fukushima Y., Nakako H., Masuda T. (2000) Conformational study of helical poly(propiolic ester)s in solution, J. Am. Chem. Soc. 122, 8830–8836.

    CAS  Google Scholar 

  65. Nomura R., Tabei J., Masuda T. (2002) Effect of side chain structure on the conformation of poly(N-propargylamide), Macromolecules 35, 2955–2961.

    CAS  Google Scholar 

  66. Balcar H., Čejka J., Kubišta J., Petrusová L., Kubát P., Blechta V. (2000) Preparation and properties of isomeric N-(4-substituted benzylidene)-4-ethynylanilines and 4-substituted N-(4-ethynylbenzylidene)-anilines, Collect. Czech. Chem. Commun. 65, 203–215.

    CAS  Google Scholar 

  67. Yang W., Tabata M., Kobayashi S., Yokota K., Shimizu A. (1991) Synthesis of ultra-high-molecular-weight aromatic polyacetylenes with [Rh(norbornadiene)Cl]2-triethylamine and solvent-induced crystallization of the obtained amorphous polyacetylenes, Polym. J. 23, 1135–1138.

    CAS  Google Scholar 

  68. Tabata M., Takamura H., Yokota K., Nozaki Y., Hoshina T., Minakawa H., Kodaira K. (1994) Pressure-induced cis to trans isomerization of poly(o-methoxyphenylacetylene) polymerized by Rh complex catalyst-a Raman, X-ray, and ESR study, Macromolecules, 27, 6234–6236.

    CAS  Google Scholar 

  69. Mawatari Y., Tabata M, Sone T., Ito K., Sadahiro Y. (2001) Origin of color of π-conjugated columnar polymers. I. Poly(p-3-methylbutoxy)phenylacetylene prepared using a [Rh(norbornadiene)Cl]2 catalyst, Macromolecules, 34, 3776–3782.

    CAS  Google Scholar 

  70. Tabata M., Sadahiro Y., Nozaki Y., Inaba Y., Yokota K. (1996) Hexagonal columns of poly(n-alkylpropiolate) produced with rhodium complex catalyst. X-ray analysis and oxygen permeability, Macromolecules, 29, 6673–6675.

    CAS  Google Scholar 

  71. Nakako H., Mayahara Y., Nomura R., Tabata M., Masuda T. (2000) Effect of chiral substituents on the helical conformation of poly(propiolic ester)s, Macromolecules, 33, 3978–3982.

    CAS  Google Scholar 

  72. Tabei J., Nomura R., Masuda T. (2002) Conformational study of poly(N-propargylamide)s having bulky pendant groups, Macromolecules, 35, 5405–5409.

    CAS  Google Scholar 

  73. Percec V., Barboiu B., Neumann A., Ronda J. C., Zhao M. (1996) Metal-catalyzed “living” radical polymerization of styrene initiated with arenesulfonyl chlorides. From heterogeneous to homogeneous catalysis Macromolecules, 29, 3665–3668.

    CAS  Google Scholar 

  74. Moineau G., Granel C., Dubois P., Jérôme R., Teyssié P. (1998) Controlled radical polymerization of methyl methacrylate initiated by an alkyl halide in the presence of the Wilkinson catalyst Macromolecules, 31, 542–544.

    CAS  Google Scholar 

  75. Petrucci M.G.L., Lebuis A.M., Kakkar A.K. (1998) Rhodium(I) mixed CO/phosphine/amine complexes: Synthesis, structure, and reactivity, Organometallics, 17, 4966–4975.

    CAS  Google Scholar 

  76. Opstal T., Zedník J., Sedláček J., Svoboda J., Vohlídal J., Verpoort F. (2002) Atom Transfer Radical Polymerization of Styrene and Methyl Methacrylate Induced by RhICycloocta-1,5-diene) Complexes, Collect. Czech. Chem. Commun. 67, 1858–1871.

    CAS  Google Scholar 

  77. Choi J.C., Osakada K., Yamaguchi I., Yamamoto T. (1997) Polymerization of arylallenes catalyzed by organo-rhodium(I) and-cobalt(I) complexes to give structurally regulated high-mass polymers, Appl. Organomet. Chem. 11, 957–961.

    CAS  Google Scholar 

  78. Choi J.C., Osakada K., Yamamoto T. (1998) Single and multiple insertion of arylallene into the Rh-H bond to give (π-allyl)rhodium complexes, Organometallics 17, 3044–3050.

    CAS  Google Scholar 

  79. Osakada K., Takenaka Y., Choi J.C., Yamaguchi I., Yamamoto T. (2000) Synthesis of linear and branched polyketones from the Rh complex catalyzed living alternating copolymerization of (4-alkylphenyl)allene with CO, J. Polym. Sci. Polym. Chem. 38, 1505–1511.

    CAS  Google Scholar 

  80. Takenaka Y., Osakada K. (2001) Rh complex catalyzed alternating copolymerization of alkylallene or aryloxoallene with carbon monoxide: Influence of monomer structures on the reaction rate, Macromol. Chem. Phys. 202, 3571–3578.

    CAS  Google Scholar 

  81. Takeuchi D., Choi J.C., Takenaka Y., Kim S., Osakada K. (2002) Polymerization of high potential monomers by transition metal complex catalysts, Kobunshi Ronbunshu, 59, 342–355.

    CAS  Google Scholar 

  82. Li Y.N., Kawakami Y. (1999) Efficient synthesis of poly(silyl ether)s by Pd/C and RhCl(PPh3)(3)-catalyzed cross-dehydrocoupling polymerization of bis(hydrosilane)s with diols, Macromolecules, 32, 6871–6873.

    CAS  Google Scholar 

  83. Zhang R.Z., Mark J.E., Pinhas A.R. (2000) Dehydrocoupling polymerization of bis-silanes and disilanols to poly(silphenylenesiloxane) as catalyzed by rhodium complexes, Macromolecules, 33, 3508–3510.

    CAS  Google Scholar 

  84. Osakada K. (2000) Structure and chemical properties of mononuclear and dinuclear silylrhodium complexes. Activation of the Si-C bond and formation of Si-Cl and Si-SR bonds promoted by Rh complexes, J. Organomet. Chem., 611, 323–331.

    CAS  Google Scholar 

  85. Yamaguchi I., Ishii H., Sakano T., Osakada K., Yamamoto T. (2001) Rhodium-and ruthenium-complex-catalyzed condensation of ferrocene-containing dithiols and diols with diarylsilanes to give silaferrocenophanes and ferrocene polymers, Appl. Organomet. Chem. 15, 197–203.

    CAS  Google Scholar 

  86. Marciniec B., Malecka E. (1999) Synthesis of silazanylene-vinylene oligomers via catalytic polycondensation of divinyltetramethyldisilazane, Macromol. Rapid Commun. 20, 475–479.

    CAS  Google Scholar 

  87. Marciniec B. (2000) New unsaturated organosilicon oligomers via catalytic polycondensation of divinylsubstituted silicon compounds, Mol. Cryst. Liquid Cryst. 354, 761–770.

    Google Scholar 

  88. Marciniec B. (2000) Silicometallics and catalysis, Appl. Organomet. Chem. 14, 527–538.

    CAS  Google Scholar 

  89. Chen R.M., Chien K.M., Wong K.T., ** B.Y., Luh T.Y., Hsu J.H., Fann W.S. (1997) Synthesis and photophysical studies of silylene-spaced divinylarene copolymers. Molecular weight dependent fluorescence of alternating silylene-divinylbenzene copolymers, J. Am. Chem. Soc. 119, 11321–11322.

    CAS  Google Scholar 

  90. Mori A., Takahisa E., Kajiro H., Nishihara Y., Hiyama T. (2000) Regio-and stereocontrolled hydrosilylation polyaddition catalyzed by RhI(PPh3)3. Syntheses of polymers containing (E)- or (Z)-alkenylsilane moieties, Macromolecules, 33, 1115–1116.

    CAS  Google Scholar 

  91. Ogawa T., Murakami M. (1996) Synthesis, thermal and mechanical properties of poly(methylphenylsilmethylene)s, Chem. Mater. 8, 1260–1267.

    CAS  Google Scholar 

  92. Temple K., Dziadek S., Manners I. (2002) Highly active cationic rhodium(I) precatalysts for the ambient temperature ring-opening polymerization of [1]silaferrocenophanes and tetramethyl-disilacyclobutane, Organometallics, 21, 4377–4384.

    CAS  Google Scholar 

  93. Dutta P.K., Puri M. (1988) Formation of trans-polyacetylene on transition-metal zeolites-A resonance Raman study, J. Catal. 111, 453–456.

    CAS  Google Scholar 

  94. Cox S.D., Stucky G.D. (1991) Polymerization of methylacetylene in hydrogen zeolites, J. Phys. Chem. 95, 710–720.

    CAS  Google Scholar 

  95. Pereira C., Kokotailo G.T., Gorte R.J. (1991) Acetylene polymerization in a H-ZSM-5 zeolite, J. Phys. Chem. 95, 705–709.

    CAS  Google Scholar 

  96. Bordiga S., Ricchiardi G., Spoto G., Scarano D., Carnelli L., Zecchina A., Arean C.O. (1993) Acetylene, methylacetylene and ethylacetylene polymerization on H-ZSM5-a spectroscopic study, J. Chem. Soc.-Faraday Trans. 89, 1843–1855.

    CAS  Google Scholar 

  97. RuizHitzky E., Aranda P. (1997) Confinement of conducting polymers into inorganic solids, Anales Quim. 93, 197–212.

    CAS  Google Scholar 

  98. Cardin J. (2002) Encapsulated conducting polymers, Adv. Mater. 14, 553–563.

    CAS  Google Scholar 

  99. Alvaro M., Ferrer B., Garcia H., Lay B., Trinidad F., Valenciano J. (2002) Remarkably high charge uptake for modified electrodes of polyacetylene molecular wires encapsulated within zeolites and mesoporous MCM-41 aluminosilicate, Chem. Phys. Lett. 356, 577–584.

    CAS  Google Scholar 

  100. Cardin D.J., Constantine S.P., Gilbert A., Lay A.K., Alvaro M., Galletero M.S., Garcia H., Marquez F. (2001) Polymerization of alkynes in the channels of mesoporous materials containing Ni and Zn cations: Almost complete filling of the voids, J. Am. Chem. Soc. 123, 3141–3142.

    CAS  Google Scholar 

  101. Galletero M.S., Alvaro M., Garcia H., Gomez-Garcia C.J., Lay A.K. (2002) Spontaneous do** and magnetic properties of polyacetylene and polypropyne synthesized in situ in Ni-exchanged mordenite and mesoporous MCM-41, Phys. Chem. Chem. Phys. 4, 115–120.

    CAS  Google Scholar 

  102. Lin V.S.Y., Radu D.R., Han M.K., Deng W.H., Kuroki S., Shanks B.H., Pruski M. (2002) Oxidative polymerization of 1,4-diethynylbenzene into highly conjugated poly(phenylene butadiynylene) within the channels of surface-functionalized mesoporous silica and alumina materials, J. Am. Chem. Soc. 124, 9040–9041.

    CAS  Google Scholar 

  103. Corma A. (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis, Chem. Rev. 97, 2373–2419.

    CAS  Google Scholar 

  104. Ying J.Y., Mehnert C.P., Wong M.S. (1999) Synthesis and applications of supramolecular-templated mesoporous materials, Angew. Chem. Int. Edit. 38, 56–77.

    CAS  Google Scholar 

  105. Rahiala H., Beurroies I., Eklund T., Hakala K., Gougeon R., Trens P., Rosenholm J.B. (1999) Preparation and characterization of MCM-41 supported metallocene catalysts for olefin polymerization, J. Catal. 188, 14–23.

    CAS  Google Scholar 

  106. Melis K, De Vos D, Jacobs P, Verpoort F. (2001) ROMP and RCM catalysed by (R3P)2Cl2Ru=CHPh immobilised on a mesoporous support, J. Mol. Catal. A-Chem. 169, 47–56.

    CAS  Google Scholar 

  107. Balcar, H., Čejka, J., Sedláček, J., Svoboda, J., Zedník, J., Basti, Z., Bosáček, V., Vohlídal, J. (2003) [Rh(cod)Cl]2 Complex Immobilized on Mesoporous Molecular Sieves MCM-41-A New Hybrid Catalyst for Polymerization of Phenylacetylene, J. Mol. Catal. A: Chem. submitted.

    Google Scholar 

  108. Balcar H., Čejka J., Sedlâcek J., Svoboda J., Basti Z., Pacovská M., Vohlídal J. (2003) Mesoporous molecular sieves immobilized catalysts for polymerization of phenylacetylene and its derivatives, this issue.

    Google Scholar 

  109. D’Archivio A.A., Galantini L., Biffis A., Jeřábek K., Corain B. (2000) Polybenzimidazole as a promising support for metal catalysis: Morphology and molecular accessibility in the dry and swollen state, Chem. Eur. J. 6, 794–799.

    Google Scholar 

  110. Leinonen S., Sherrington D.C., Sneddon A., McLoughlin D., Corker J., Canevali C., Morazzoni F., Reedijk J., Spratt S.B.D. (1999) Molecular structural and morphological characterization of polymer-supported Mo(VI) alkene epoxidation catalysts, J. Catal. 183, 251–266.

    CAS  Google Scholar 

  111. Olason C., Sherrington D.C. (1999) Oxidation of cyclohexene by t-butylhydroperoxide and dioxygen catalysed by polybenzimidazole-supported Cu, Mn, Fe, Ru and Ti complexes, React. Fund. Polym. 42, 163–172.

    CAS  Google Scholar 

  112. Leadbeater N.E., Marco M. (2002) Preparation of polymer-supported ligands and metal complexes for use in catalysis, Chem. Rev. 102, 3217–3273.

    CAS  Google Scholar 

  113. Sheldrick W.S., Gunther B. (1989) Synthesis and structure of the mixed bridged diene-rhodium(I) complex [(cod)Rh(μ-Cl)(μ-OAc)Rh(cod)]-reactions with the modified purine bases N-6,N-6-dimethyladenine and 8-aza-9-methyladenine, J. Organomet. Chem. 375, 233–243.

    CAS  Google Scholar 

  114. Mastrorilli, P., Nobile, C.F., Rizzuti, A., Suranna, G.P., Acierno, D. and Amendola, E. (2002) Polymerization of phenylacetylene and p-tolyacetylene catalyzed by beta-dioxygenato rhodium(I) complexes in homogeneous and heterogeneous phase, J. Mol. Catal. A: Chem. 178, 35–42.

    CAS  Google Scholar 

  115. Bianchini C., Frediani M., Mantovani G., Vizza F. (2001) Synthesis of polymer-supported rhodium(I)-1,3-bis(diphenylphosphino)propane moieties and their use in the heterogeneous hydrogénation of quinoline and benzylideneacetone, Organometallics 20, 2660–2662.

    CAS  Google Scholar 

  116. Bianchini C., Frediani M., Vizza F. (2001) Synthesis of the first polymer-supported tripodal triphosphine ligand and its application in the heterogeneous hydrogenolysis of benzo[b]thiophene by rhodium catalysis, Chem. Commun. 479–480.

    Google Scholar 

  117. Lopez-Castillo Z.K., Flores R., Kani I., Fackler J.P., Akgerman A. (2002) Fluoroacrylate copolymer-supported rhodium catalysts for hydrogenation reactions in supercritical carbon dioxide, Ind. Eng. Chem. Res. 41, 3075–3080.

    CAS  Google Scholar 

  118. Csihony S., Fischmeister C., Bruneau C., Horvath I.T., Dixneuf P.H. (2002) First ring-opening metathesis polymerization in an ionic liquid. Efficient recycling of a catalyst generated from cationic ruthenium allenylidene complex, New J. Chem. 26, 1667–1670.

    CAS  Google Scholar 

  119. Mastrorilli P., Nobile C.F., Gallo V., Suranna G.P., Farinola G. (2002) Rhodium(I) catalyzed polymerization of phenylacetylene in ionic liquids, J. Mol. Cat. A-Chem. 184, 73–78.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Vohlídal, J., Pacovská, M., Sedláček, J., Svoboda, J., Zedník, J., Balcar, H. (2003). Polymerizations Catalyzed with Rhodium Complexes. In: Imamoglu, Y., Bencze, L. (eds) Novel Metathesis Chemistry: Well-Defined Initiator Systems for Specialty Chemical Synthesis, Tailored Polymers and Advanced Material Applications. NATO Science Series, vol 122. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-0066-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-0066-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1571-7

  • Online ISBN: 978-94-010-0066-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation