Coded Aperture Tomography Revisited

  • Chapter
Information Processing in Medical Imaging

Abstract

If the goal of Nuclear Medicine is to quantify the distribution of a radio labelled pharmaceutical inside an organ, then the two major drawbacks of the gamma camera when used with parallel hole collimators (the most commonly used imaging device in Nuclear Medicine) are low sensitivity and poor depth resolution of imbedded sources. The former leads to low statistics (and therefore noisy) images. Improved depth resolution can be achieved by rotating the camera around the patient (1) (SPECT system) for imaging stationary distributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Emission computerized tomography: the single photon approach, 1981. P. Paras and E.A. Eikman eds. U.S Dept. of Health and Human Services. Pub. FDA 81-8177.

    Google Scholar 

  2. Hine G.J., Erickson J.J. 1974. Advances in scintigraphic instruments. P. 34 in Instrumentation in Nuclear Medicine. Hine G.J. and Sorenson eds. Academic Press.

    Google Scholar 

  3. Vogel R.A., Kirch D., LeFree M., Steele P. 1978. A new method of multiplanar emission tomography using a seven pinhole collimator and an Anger scintillation camera. J. Nucl. Med. 19: 648–654.

    PubMed  CAS  Google Scholar 

  4. Barrett H.H. 1972. Fresnel Zone Plate imaging in nuclear medicine. J. Nucl. Med. 13: 382–395.

    PubMed  CAS  Google Scholar 

  5. Williams D.L., Ritchie J.L., Harp G.D., Caldwell J.H., Hamilton G.W. 1980. In vivo simulation of Thallium-201 myocardial scintigraphy by seven pinhole emission tomography. J. Nucl. Med. 21: 821–828.

    PubMed  CAS  Google Scholar 

  6. Bizais Y., Zubal I.G., Rowe R.W., Bennett G.W., Brill A.B. 1983. Dual seven pinhole tomography. IEEE Trans. Nucl. Sci. NS-30: 703–706.

    Article  Google Scholar 

  7. Bizais Y., Rowe R.W., Zubal I.G., Bennett G.W., Brill A.B. 1983. A comprehensive method for fast quantitative analysis of gamma camera distortions and their corrections. J. Nucl. Med. 24: P67 (abst.).

    Google Scholar 

  8. Bennett G.W., Brill A.B., Zubal I.G., Rowe R.W., Bizais Y., Dobert R.S. 1982. Unicon-a single instrument for PET, SPECT, and routine clinical gamma ray imaging. P21.08 in Proc. of the World Congress on medical Physics and Biomedical Engineering. W. Bleifeld ed. MPBE.

    Google Scholar 

  9. LeFree M.T., Vogel R.A., Kirch D.L., Steele P.P. 1981. Seven pinhole tomography-A technical description. J. Nucl. Med. 22: 48–54.

    PubMed  CAS  Google Scholar 

  10. Mallard J.R., Myers M.J. 1963. The performance of a gamma camera for the visualization of radioisotopes in vivo. Phys. Med. Biol. 8: 165–182.

    Article  PubMed  CAS  Google Scholar 

  11. Tarn K.C., Perez-Mendez V., MacDonald B. 1979. 3D object reconstruction in emission and transmission tomography with limited angular input. IEEE Trans. Nucl. Sci. NS-26: 2797–2805.

    Google Scholar 

  12. Gindi G.R., Arendt J., Barrett H.H., Chiu M.Y., Ervin A., Gilles C.L., Kujoory M.A., Miller E.L., Simpson R.G. 1982. Imaging with rotating slit apertures and rotating collimators. Med. Phys. 9: 324–339.

    Article  PubMed  CAS  Google Scholar 

  13. Viergever M.A., Vreugdenhil E., Ying-Lie O. 1982. A modelling approach to seven pinhole tomography. P. 499 in Proc. of the Third World Congress of Nuclear Medicine and Biology. Raynaud C. ed. Pergamon.

    Google Scholar 

  14. Phillips D.L. 1964. A technique for the numerical solution of certain integral equations of the first kind. J. Ass. Comp. Mach. 9: 84–97.

    Google Scholar 

  15. Steinbach A., Macovski A. 1979. Improved depth resolution with one dimensional coded aperture imaging. J. Phys. D: Appl. Phys. 12: 2079–2099.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Bizais, Y., Rowe, R.W., Zubal, I.G., Bennett, G.W., Brill, A.B. (1984). Coded Aperture Tomography Revisited. In: Deconinck, F. (eds) Information Processing in Medical Imaging. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6045-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6045-9_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6047-3

  • Online ISBN: 978-94-009-6045-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation