Latent Heat or Phase Change Thermal Energy Storage

  • Chapter
Solar Thermal Energy Storage

Abstract

It has been explained in sections 1.6 and 1.6.2 how phase change materials (PCM) have considerably higher thermal energy storage densities compared to sensible heat storage materials and are able to absorb or release large quantities of energy (“latent heat”) at a constant temperature by undergoing a change of phase. The materials may also store some sensible heat due to small temperature changes that are inevitable. However, such energy storage is small compared to latent heat of phase transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.K. Pillai and B.J. Brinkworth (1976), ‘The storage of low grade thermal energy using phase change materials’, Applied Energy, 2, 205–216.

    Article  Google Scholar 

  2. A. Abhat (1981), ‘Low temperature latent heat thermal energy storage’, Chapter from book ‘Thermal Energy Storage’ (Edited C. Beghi), D. Reidel Pub. Co., Dordrecht, Holland, 1981.

    Google Scholar 

  3. G. Wettermark, et al (1979), ‘Storage of heat-a survey of efforts and possibilities’, Doc. D2:1979, Swedish Council for Building Research, 1979.

    Google Scholar 

  4. H.G. Lorsch, K.W. Kauffman and J.C. Denton (1 975), ‘Thermal energy storage for solar heating and off-peak air conditioning’, Energy Conversion, 15, 1–8.

    Google Scholar 

  5. H.G. Lorsch (1972), Report No. NSF/RANN/SE GI 27976/ TR 72/20, University of Pennsylvania, 1972.

    Google Scholar 

  6. A. Abhat (1980), ‘Short term thermal energy storage’, Revue Phys. Appl. 1 5, 477–501.

    Google Scholar 

  7. P.G. Grodzka (1980), ‘Phase change storage systems’ Chapter 25 from the book ‘Solar energy technology Handbook, Part A: Engineering fundamentals’ (Ed. W.C. Dickinson and D.N. Cheremisimoff ), Marcel Dekker, Inc., 1980.

    Google Scholar 

  8. M. Telkes (1974), ‘Solar Energy Storage’ ASHRAE Journal, 16 (9), 38–44.

    Google Scholar 

  9. J. Schroder (1979). ‘R and D of the systems for thermal energy storage in £he temperature range from -25C to 150C’ Seminar on New Ways to Save Energy, Commission of the European Communities, Brussels, Belgium, Oct. 1979.

    Google Scholar 

  10. D.V. Hale et al (1971), ‘Phase change materials handbook’ NASA Report, NASA-CR-CR-61 363, Sept. 1971.

    Google Scholar 

  11. F. Baylin (1979), ‘Low temperature thermal energy storage: A stage of the art survey’, Solar Energy Research Institute Report No. SERI/RR-54-164, Golden, Colorado ( U.S.A. ), July 1979.

    Google Scholar 

  12. National Science Foundation (1975), ‘Energy storage using latent heat of phase change’ Washington: NSF: July, 1 975; NSF/RANN/SE/P. 416180 - 000/FRV 75 /01.

    Google Scholar 

  13. G.A. Lane, D.N. Glew, E.C. Clarke, H.E. Rossow, S.W. Quigley, S.S. Drake, and J.S. Best (1975), ‘Heat of fusion systems for solar energy storage’ Proc. Workshop on solar energy storage subsystems for heating and cooling of buildings, University of Virginia, Charlottesville, April, 1975, p. 43–55.

    Google Scholar 

  14. G.A. Lane (1980), ‘Low temperature heat storage with phase change materials’ Int. J. Ambient Energy, 1 (3), 155–168.

    Article  Google Scholar 

  15. J.K.R. Page and R.E.H. Swayne (1981), ‘Phase change thermal storage for solar applications’, Proc. Int. Conf. on Energy Storage, Brighton, U.K., April 29– May 1, 1981, p. 165–170.

    Google Scholar 

  16. J. SchrSder and K. Gawron (1981), ‘Latent heat storage’, Energy Research, 5, 103–109.

    Article  Google Scholar 

  17. K. Gawron and J. Schroder (1977), ‘Properties of some salt hydrates for latent heat storage’, Energy Research, 1, 351–363.

    Article  Google Scholar 

  18. C.S. Herrick and D.C. Golibersuch (1977), ‘Qualitative behaviour of a new latent heat storage device for solar heating/cooling systems’ Valley Forge, PA, General Electric Company; March 1977: Report No. 77CRD006.

    Google Scholar 

  19. S. Furbo and S. Svendsen (1978), ‘Report on heat storage in a solar heating system using salt hydrates’ Report from Thermal Insulation Laboratory, Technical University of Denmark, 1978.

    Google Scholar 

  20. R.F. Strickland-Constable (1968), ‘Kinetics and Mechanisms of Crystallization’, Academic Press, London, 1968.

    Google Scholar 

  21. P. Haasen (1974), ‘Physik Metal’, Springer-Verlag, Heidelberg, 1974.

    Google Scholar 

  22. A. Abhat and M. Malatidis (1981), ‘Determination of properties of heat of fusion storage materials for low temperature applications’ 1st TEA Conference on New Energy Conservation Technologies. Berlin, 6–10 April, 1981.

    Google Scholar 

  23. M. Zief and W.R. Wilcox (1967), ‘Fractional solidification’, Marcel Dekker, Inc., New York, Vol. 1, 1967.

    Google Scholar 

  24. T. Ozawa, M. Kamimoto, R. Sakamoto, Y. Takahashi, and K. Kanari (1979), ‘Preliminary examination of latent heat thermal energy storage materials. I Screening from view-point of energy density and material cost’, Bui. Electrotech. Lab., 43 (5), 289–298.

    Google Scholar 

  25. T. Ozawa, M. Kamimoto, R. Sakamoto, YP Takahashi, and K. Kanari (1980), ‘Screening of latent heat thermal energy storage materials byusing evaluated thermodynamic data’ Presented at the 7th CODATA Int. Conf.. Kyoto (Japan), 1980.

    Google Scholar 

  26. J.A. Bailey, J.C. Mulligen, and C.K. Liao, ‘Research on solar energy storage subsystems utilizing the latent heat of phase change of certain organic materials’ Final Report to Energy Research and Development Administration for contract EY-76-S-05- 5101.

    Google Scholar 

  27. K.W. Kauffman and I. Gruntfest (1973), ‘Congruently melting materials for thermal energy storage’, RenortNo. NCEMP-20, University of Pennsylvania, 1973.

    Google Scholar 

  28. T. Ozawa, M. Kamimoto, R. Sakamoto, Y. Takahashi, and K. Kanari (1980), Preliminary examination of latent heat thermal energy storage materials. II. Screening of eutectic mixtures over a range from 80°C to 500°C from view point of energy density and material cost,. Bui. Electrotech. Lab., 44(11,12), 707–724.

    Google Scholar 

  29. G.L. Janz, C.B. Allen, J.R. Downey, and R. P. T. Tomkins (1978), ‘Physical properties data compilations relevant to energy storage I. Molten salts: Eutectic data’, National Bureau of Standards, Washington,D.C.

    Google Scholar 

  30. N. Yoneda and S. Takanashi (1978), ‘Heat conduction and diffusion with a phase change’ Chapter from Advances in Chemical Engineering, Edited by T.B. Drew et al, Vol. 5, pp. 75–150, Academic Press, New York.

    Google Scholar 

  31. M. Goldstein (1961), ‘Some physical chemical aspects of heat storage’, U. N. Conference on New Sources of Energy, Rome, April 1961, paper No. 35 5 /7.

    Google Scholar 

  32. M. Telkes (1964), ‘Solar heat storage’, ASME paper 64-WA/S0L-9.

    Google Scholar 

  33. M. Altman, H. Yeh and H.G. Lorsch (1973), ‘Conservation and better utilization of electric power by means of thermal energy storage and solar heating — final summary report’,NSF/RANN/SF/GI 27 97 6/PR73/5, University of Pennsylvania, July 1973.

    Google Scholar 

  34. H.G, Lorsch (1974), ‘Thermal energy storage — Final Report’, NSF/RANN/74—021C.

    Google Scholar 

  35. K.W. Kauffman and Y.C. Pan (1977), ‘Congruent meltina materials for thermal energy storage in air conditioning’, NSF/RANN/SE/GI 27976/TR 73 /5.

    Google Scholar 

  36. M. Telkes (1980), ‘Thermal energy storage in salt hydrates’, Solar Energy Materials, 2, 381–393.

    Article  Google Scholar 

  37. L. Christensen, N. Cho, G. Keyser, D. Lamb, E. Wedum, and J. Hallatt (1979), ‘Studies of nucleation and growth of hydrate crystals with application to thermal storage systems’ DOE contact No.W-740 5-eng- 26, Report NSF-RANN-AER-75-19601.

    Google Scholar 

  38. K.K. Meisingsat and F. Gronvold (1981), ‘Latent heat storage in salt hydrates’, Helios 11, 9–10.

    Google Scholar 

  39. H.P. Garg and M. Nasim (1981), ‘Studies on low-temperature salt-hydrate for thermal storage applications’, Energy Conversion and Management, 21 125–130.

    Article  Google Scholar 

  40. H. Kimura (1980), ‘Nucleation of molten Na2S203 –5H2O and some similar hydrates: A thermodynamic observation’, I and EC Fundamentals, 19, 251–253.

    Article  Google Scholar 

  41. M. Telkes (1947), ‘Solar house heating–A problem of heat storage’, J. Heating and Ventilating, 44, 68–75.

    Google Scholar 

  42. M. Telkes and E. Raymond (1949), ‘Storing solar heat in chemicals’, Heating and Venti1ating, 80

    Google Scholar 

  43. J.W. Hodgins and T.W. Hoffman (1955), ‘The storag and transfer of low potential heat’, Can. J. Tech (Can. J. Chem. Engg.) 33, 293.

    Google Scholar 

  44. K.W. Kauffman and Y.C. Pan (1973), ‘Thermal energy storage in sodium sulfate decahydrate mixtures’, Rep. No. NSF/RANN/SE/GI 27976/TR 72/11 University of Pennsylvania (USA).

    Google Scholar 

  45. D.R. Biswas (1977), ‘Thermal energy storageusing sodium sulfate decahydrate and water’, Solar Energy, 19, 99–100.

    Article  Google Scholar 

  46. L. Babin, D. Clausse. I. Sifrini, F. Boto and M. Chaurses, ‘Nucleation Par de Borax du sulfate de sodium disperse application possible an stockage thermique’, J. de Physigue Lett. 39, L359.

    Google Scholar 

  47. S. Marks (1980), ‘An investigation of the thermal energy storage capacity of Glauber’s salt with respect to therma J cycling’, Solar Energy, 25. 255–258.

    Article  Google Scholar 

  48. W.C. Blasdale (1918), ‘Equilibria in solutions containing mixtures of salts’, J. Ind. Engg. Chem 10, 344.

    Article  Google Scholar 

  49. A. Chretien, El Sistema Cuatermerio (1927), ‘Aqua—Nitrato de sodio-cloriro de sodio, a Menos de O° ya a Mas de 100° Caliche’, 9, 248.

    Google Scholar 

  50. M. Telkes (1952), ‘Nucleation of supersaturated inorganic salt solutions’, Ind. Eng. Chem., 4, 1308, 1952.

    Google Scholar 

  51. M. Telkes (1954), ‘Method and apparatus for the storage of heat’, U.S. Pat. No. 2677, 664.

    Google Scholar 

  52. B. Carlsson, H. Stymme, and G. Wettermark (1978), ‘Storage of low temperature heat in salt-hydrate melts–Calcium chloride hexahydrate’, Swedish Council for building Research, Document D12: 1978

    Google Scholar 

  53. G.A. Lane (1977), ‘Macro-encapsulation of heat storage phase change materials’, Proc. Second annual thermal energy storage contractors meeting, Sept. 29–30, 1977, Gatlinburg, Tennessee, p. 45.

    Google Scholar 

  54. G.A. Lane (1981), ‘Adding strontium chloride or calcium hydroxide to calcium chloride hexahydrate heat storage material’, Solar Energy, 27. 73–75.

    Article  Google Scholar 

  55. B. Carlsson, H. Stymme and G. Wettermark (1979), ‘An incongruent heat of fusion system–CaCl2.6H20–made congruent through modification of the chemical’composition of the system’, Solar Energy, 23, 343–350.

    Article  Google Scholar 

  56. B. Carlsson and G. Wettermark (1980), ‘Heat transfer properties of a heat–of–fusion store based on CaCl2.6H20’, Solar Energy, 24, 239–247.

    Article  Google Scholar 

  57. D. Chahroudi (1975), ‘Suspension media for heat storage materials’, Proc. Workshop on Solar Energy Storage Subsystems for the heating and cooling of buildings, University of Virginia, Charlottesville, April 16–18, 1975, p. 56–59.

    Google Scholar 

  58. M. Telkes (1975), ‘Thermal storage for solar heating and cooling’, Proc. Workshop on Solar Energy Storage Subsystems for the heating and cooling of buildings’, University of Virginia, Charlottesville, April 1 6–18,1975, p. 17–23

    Google Scholar 

  59. M. Telkes (1977), ‘Heat of fusion systems for solar heating and cooling’, Solar Engg. Magazine, September 1977.

    Google Scholar 

  60. S. Furbo (1982), ‘Heat storage units using asalt hydrate as storage medium based on the extra water principle’, Report from Thermal Insulation Laboratory, Technical University of Denmark. January 1982, Meddelelse Nr. 116.

    Google Scholar 

  61. S. Furbo (1978), ‘Investigation of heat storages with salt hydrate as storage medium based on the extra water principle’ Report from Thermal Insulation Laboratory, Technical University of Denmark, December 1978, Meddelelse Nr. 80.

    Google Scholar 

  62. C.S. Herrdck (1979), ‘A rolling cylinder latent heat storage device for solar heating/cooling’ ASHRAE Trans., 85. 512–515.

    Google Scholar 

  63. C.S. Herrick and K.P. Zarnok (1980), ‘Heatstorage capability of a rolling cylinder using Glauber’s salt1, The Int. J. Ambient Energy, 1, 47–55.

    Google Scholar 

  64. S.K. Sharma and S. Singh (1979), Paraffin wax as phase change thermal storage material’, Proc. First National Workshop on Solar Energy Storage, Chandigarh, March 16–18, 1979, pp. 77–88, ( Ed. S.K. Sharma ).

    Google Scholar 

  65. A.A. Shaerer, C.J. Busso and A. E. Smith (1955), J. Am. Chem. Soc. 70, 2017.

    Article  Google Scholar 

  66. N. A. Mancini (1981), ‘Use of paraffins for thermal storage’, Proc. TNO Symp. on Thermal Storage of Solar Energy, Amsterdam, 1980, p. 99–110.

    Google Scholar 

  67. N.A. Mancini, F. Simone, A. Strano. and S.O. Troia (1981), ‘Methods of thermal drorage. Second International Symposium on Non–conventional Energy’, Trieste (Italy), 14 July–6 Aug., 1981.

    Google Scholar 

  68. G.A. Lane (1978), ‘Macro-encapsulation of heat storage phase change materials’, Proc. Third Annual Thermal energy storage contractors meeting, Springfield, VA, Dec. 1978.

    Google Scholar 

  69. A. Abhat, S. Aboul-Erein, N. Malatidis and G. Naver (1980), ‘Latent warmeseicher für solare Heizingssystem’, Statusbericht Sonnenenergie I.P. 375–394, VDI–Verlag.

    Google Scholar 

  70. A. G. De Jong and C.J. Hoogendoorn (1981), ‘Improvement of heat transport in paraffins for latent heat storage systems’ Proc. TNO Symposium on ‘Thermal storage of solar Energy’, Amsterdam, 1980, p. 99–110.

    Google Scholar 

  71. J.A. Bailey, C.K. Liao, S.I. Guceri, and J.C. Mulligan, (1975), ‘A solar energy storage subsystem utilizing the latent heat of fusion of paraffin hydrocarbons: A progress Report’, Proc. Workshop on Solar Energy Storage subsystems for heating and cooling of buildings, University of Virginia, Charlottesville, April, 1975, p. 75–84.

    Google Scholar 

  72. J.A. Bailey, J.C. Mulligan, E.K. Liao, S.I. Guceri, R.L. Ives, and M. Krishne Reddy, ‘Research on solar energy storage subsystems utilizing the latent heat of phase change of paraffin hydrocarbons for the heating and cooling of buildings’ Annual Report of NSF for grant GI-44381, North Carolina State University, Releigh, North Carolina (USA).

    Google Scholar 

  73. A.D. Solomon (1979), ‘An easily computable solution to a two-phase Stefan problem’, Solar Energy, 23, 525–528.

    Article  Google Scholar 

  74. G. Gobin, J.C. Gory, C. Banard, D. Levesgue (1980), ‘Heat transfer through a paraffin wax solar energy storage characterized by a temperature dependent specific heat’ Alternative Energy Sources, 487–491.

    Google Scholar 

  75. S.G. Bankoff (1964), ‘Heat conduction and diffusion with a phase change’, Chapter from Advances in Chemical Engineering, Edited by T. B. Drew et al, Vol. 5, pp. 75–150, Academic Press, New York.

    Google Scholar 

  76. D.G. Wilson, A.D. Solomon, and P.T. Boggs, Editors (1978), ‘Moving boundary problems’, Academic Press, New York.

    MATH  Google Scholar 

  77. H.S. Carslaw and J.C. Jaeger (1959), ‘Conduction of beat in solids’, 2nd Ed., pp. 283–296, Oxford University Press, New York.

    Google Scholar 

  78. D.V. Boger and J.W. Westwater (1 967), ‘Effect of buoyancy on the melting aidfreezing process’, Trans. ASME, Ser. C., Journal of Heat Transfer, 69, 81–89.

    Google Scholar 

  79. W.L. Heitz and J.W. Westwater (1970), ‘Extension of the numerical method for melting and freezing problems’, Int. J. Heat Mass Transfer, 13, 1371–1375.

    Article  Google Scholar 

  80. J.C. Thomas and J.W. Westwater (1970), ‘Microscopic study of solid-liguid interfaces during melting and freezing’, AIChE Chem. Enga. Prog. Symp. Ser., 59 (41), 155–164.

    Google Scholar 

  81. W.D. Murray and F. Landis (1959), ‘Numerical and machine solutions of transient heat conduction problems involving phase change’, Trans. ASME, Ser.C., Journal of Heat Transfer, 81, 106–112.

    Google Scholar 

  82. A. D. Ukanawa, F. J. Stermole, and J.O. Golden (1971), ‘Phase change solidification dynamics’, J. Spacecraft Rockets, 8, 193–196.

    Article  Google Scholar 

  83. S.H. Cho and J.E. Sunderland (1974), ‘Phase change problems with temperature-dependent thermal conductivity’, Trans. ASME, Ser. C., Journal of Heat Transfer, 95, 214–217.

    Article  Google Scholar 

  84. N.W. Hale Jr. and R. Viskanta (1980), ‘Solid–liquid phase–change heat transfer and interface motion in materials cooled or heated from above or below’, Int. J. Heat Mass Transfer, 23, 283–292.

    Article  Google Scholar 

  85. A.D. Solomon (1 979), ‘Melt time and heat flux for a simple PCM body’ Solar Energy, 22, 251–257.

    Google Scholar 

  86. D.J. Morrison and S.I. Abdel–Khalik (1978), ‘Effects of phase change energy storage on the performance of air-based and laguid—based solar heating systems’ Solar Energy, 20, 57–67.

    Article  Google Scholar 

  87. Solomon (1979), ‘A simple surface temperature versus time relations for a phase change problem’ Lett. Heat and Mass Trans. 6, 192–200.

    Google Scholar 

  88. F. Kreith, Principles of Heat Transfer, 3rd Edn., Harper and Row, 1973.

    Google Scholar 

  89. M.N. Ozisik, Basic Heat Transfer, McGraw–Hill, 1977.

    Google Scholar 

  90. S.C. Kaushik, M.S. Sodha, S.C. Bhardwaj and N.D. Kaushik (1981), ‘Periodic heat transfer and load levelling of heat flux through a PCCM therma1storage wall/roof in an air–conditioned building’ Building and Environment, 16 (2), 99–1 08.

    Google Scholar 

  91. J.J. Jurinak and S.I. Abdel–Khalik (1978). ‘Properties optimization for phase–change energy storage in air–basedso1ar heating systems’, Solar Energy, 21, 377–383.

    Article  Google Scholar 

  92. P.J. Hughes, S.A. Klein, and D.J. Close (1976), ‘Packed bed thermal storage mod el s for solar air heatina and coo1ingsystems’, Trans. ASME, J. Heat Transfer, 98, 36–338.

    Article  Google Scholar 

  93. S.A. Klein et al (1976), ‘TRNSYS, A transient simulation program’ University of Wisconsin, EES Report No. 38, ASHRAE Trans. 1976.

    Google Scholar 

  94. J.J. Jurinak and S.I. Abdel–Khalik (1979), ‘Sizing phase change energy storage units for air–based solar heating systems’, Solar Energy, 22, 355–359.

    Article  Google Scholar 

  95. D.J. Morrison (1976), Performance of solar heating systems utilizing phase change energy storage, M.S. Thesis, University of Wisconsin, 1976.

    Google Scholar 

  96. P.G. Grodzka (1975), ‘Some practical aspects of thermal energy storage’, Proc. Workshop on Solar Energy Storage Subsystems for the heating and cooling of buildings, University of Virginia, Charlottesville, April 16–18, 1975, pp. 68–71.

    Google Scholar 

  97. G.A. Lane et al (1978), ‘Macro–encapsulation of PCM’, Report 0R0/5217–8, Dow Chemical Company, Midland, Michigan, Nov. 1978, p. 152.

    Google Scholar 

  98. G.A. Lane and H.E. Rossow (1976), ‘Encapsulation of heat of fusionstorage materia is’ Proc. Second Southeastern Conf. on Application of Solar Energy, Baton Rouge, Louisiana, April, 19–22, 197 6,44 2–450.

    Google Scholar 

  99. H.V. Venkatasetty (1975). Venkatasetty (1975), ‘Corrosion characteristics of phase change material systems’, Proc. Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings’, University of Virginia, Charlottesville, April 16–18, 1975, p. 65–67.

    Google Scholar 

  100. D. Heine and A. Abhat (1978), ‘Investigation of physical and chemical properties of phase change materials for space teating/cooling applications’, Sun: Mankind’s Future Source of Enerqy (Ed. F. de Winter and M. Cox ), Pergamon Press, 1978, pp. 500–506.

    Google Scholar 

  101. D.D. Edie and S.S. Melsheimer (1976), An immiscible fluid-heat of fusion energy storage system Sharing the Sun, Solar technologies in the Seventies, 8, 262–272.

    Google Scholar 

  102. D.C. Goli bersuch, F.P. Bundy, P.G. Kosky and H.B. Vakil (1975), ‘Thermal energy storage for utility applications’, General Electric Company, Schenectady, New York, Report 75, CRD 256.

    Google Scholar 

  103. M. Kamimoto and T. Tani (1980), ‘Effect of conduction promoters and fins on heattransfer in latent heat storage unit’, Bui. Electrotech. Lab., 44 (4), 268–278.

    Google Scholar 

  104. Abhat (1978), ‘Performance studies of a finned heat pipe latent heat thermalenergy storage system’ Sun: Mankind’s Future Source of Energy (Ed. F. de Winter and M. Cox) Pergamon Press, 1978, pp. 541–546.

    Google Scholar 

  105. Y. Abe, Y. Takahashi, R. Sakamoto, K. Kanari, M. Kamimoto, and T. Ozawa, ‘Charge and discharge characteristics of a direct contact latent therma1 energy storage unitusingform–stable high density polyethylene’, ASME/JSME Thermal Engineering Joint Conference Proceedings–Volume 2 (Ed. Y. Mori and W.J. Yang), 365–370.

    Google Scholar 

  106. Y. Takahashi, R. Sakamoto, M. Kamimoto, K. Kanari, and T. Ozawa (1981), ‘Investigation of latent heat–thermal energy storage materials–I. Thermoanalytical evaluation of modified polyethylene’, Thermochimica Acta, 50, 31–39.

    Article  Google Scholar 

  107. I.D. Salyer, R. A. Botham, G.H. Jenkins, and G.L. Ball III (1978), Proc. 13th Intersoc. Energy Conv. Eng. Conf., 1978, 948.

    Google Scholar 

  108. E. Fittipaldi (1 978). Fittipaldi (1 978), ‘Energy storage by solid-solid phase cha nging materials’, Proc. The first Seminar on Solar Energy Storage–Thermal Storage, International Centre of Theoretical Physics, Trieste (Italy), 4–8 Sept., 1978, 163–167.

    Google Scholar 

  109. V. Busico, P. Corradini, M. Vacatello, F. Fittipaldi, and L. Nicolais (1981), ‘Solid-solid phase transitions for thermal en ergy storage’, Thermal Storage of Solar Energy (Proc. Int. T.N.0. - Symposium, Amsterdam, Netherlands, 5–6, Nov.,1980), Ed. C. Den Ouden, Martinus Nijhoff Publ., Netherlands, 1981, 309–324.

    Google Scholar 

  110. Addeo, L. Nicolais, V. Busico, and C. Migliaresi (1 980), The development of thermal energy storage systems exploiting soli d–soli d phase transitions’, Appl. Energy, 6, 353–362.

    Google Scholar 

  111. S.B. Marks (1983), ‘The effect of crystal size on the thermal energy storage capacity of thickened Glauber’s salt’, Solar Energy 30 (1), 45–49.

    Article  Google Scholar 

  112. R.J. Wood, S.D. Gladwell, P.W.O Callaghar and S.D. Probert (1981), ‘Low temperature thermal energy storage using packed beds of encapsulated phase–change materials’, Proc. Int. Conf. on Energy Storage, Brighton, U.K., April 29–May 1,1981, p. 145– 158.

    Google Scholar 

  113. H.G. Lorsch, (1974), ‘Thermal energv storage devices suitable for solarheating ’, Ninth Intersociety Energy Conversion Engg. Conf., San Francisco, August 1974, p. 572–577.

    Google Scholar 

  114. Charles Lee, L. Taylor, J. Devries and S. Heibein (1979), Solar Energy Storage Options — a Workshop on Thermal Energy Storage for Solar Heating and Cooling, San Antonio, Texas, March 19–20, 1979.

    Google Scholar 

  115. A.I. Michaels (1981), ‘An overview of the U.S.A. program for the development of thermalenergy storage for solar energy applications’, Proc. TNO Symposium on ‘Thermal Storage of Solar Energy’, 1980, p. 79–89.

    Google Scholar 

  116. C.D. MacCracken (1981), ‘PCM bulk storage’, Proc. Int. Conf. on Energv Storage, Brighton, U.K., April 29–May 1, 1981, p. 159–164.

    Google Scholar 

  117. K. Kauffman and H.G. Lorsch (1976), ‘Thermal energy storage with aqueous solutions ’, Int. Conf. ‘Sharing the Sun’ (Biannual Conf, of ISES), Winnipeg, Canada, Aug. 15–20, 1976. Vol. 8, p.227– 237.

    Google Scholar 

  118. M. A. Bell (1981), ‘Low grade heat storage using sodium acetate solution’. Int. Conf. on Energy Storage, Brighton, U.K., April 29–May 1, 1981, p. 171–183.

    Google Scholar 

  119. S. Furbo (1980). Furbo (1980), ‘Heat Storage with an Incongruently Melting Salt Hydrate as Storage Medium Based on the Extra Water Principle’. Thermal Insulation Lab., Technical University of Denmark, Meddelelse Nr. 108, Dec. 1980.

    Google Scholar 

  120. S. Furbo (1982), ‘Heat storage Units using a Salt Hydrate as storage Medium Based on the Extra Water Principle’, Thermal Insulation Lab., Technical University of Denmark, Meddelelse Nr. 116, Jan, 1982.

    Google Scholar 

  121. T.L. Etherington (1957), ‘A dynamic heat storage system’, Heating Pi** and Air-conditioning, Dec. 1957, p. 147.

    Google Scholar 

  122. J. Schröder (N.V. Philios Gloeilampenfabrieken Neth), Ger. 2517921 (1975-04-23)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Garg, H.P., Mullick, S.C., Bhargava, A.K. (1985). Latent Heat or Phase Change Thermal Energy Storage. In: Solar Thermal Energy Storage. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5301-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5301-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8841-1

  • Online ISBN: 978-94-009-5301-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation