• 465 Accesses

Abstract

Solar photovoltaic field is getting priority in countries like USA, USSR, Japan, England, France, Germany, India etc. and there is a considerable interest, research effort and funding. This worldwide interest is attributed to a variety of factors such as search for new energy sources due to heavy pressure on conventional fuels; simplicity, cleanliness, and direct conversion into electricity by solar cells; and a fast growth of technical material. Photovoltaic cells or the so called solar cells generate electromotive force as a result of absorption of ionizing radiation. The advantages of solar cells are manyfold compared to conventional methods of power systems such as:

  1. 1.

    Solar cells directly convert the solar radiation into electricity using photovoltaic effect without going through a thermal process.

  2. 2.

    Solar cells are reliable, modular, durable, and generally maintenance free and therefore suitable even in isolated and remote areas.

  3. 3.

    Solar cells are quiet, benign, compatible with almost all environments, respond instantaneously with solar radiation, and have expected lifetime of 20 years or more.

  4. 4.

    Solar cells can be located at the place of use and hence no distribution network is required.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Wolf (1976), ‘Historical development of Solar Cells’ From Solar Cells (Editor C.E. Backus ), IEEE Press, New York, 1976, pp. 38–42.

    Google Scholar 

  2. Annon (1973), ‘Photovoltaic conversion of solar energy for terristrial applications’ Workshop proceedings, NSF- RA-N-74-013, Oct. 1973.

    Google Scholar 

  3. C.E. Backus (1984), ‘Principles of photovoltaic conversion’ Non Conventional Energy (Editors G. Furlan, N.A. Mancini and A.A.M. Sayigh), Plenum Press, New York.

    Google Scholar 

  4. P. Rappaport (1959), ‘The photovoltaic effect and its utilization’ RCA Rev. 20, 373–397, September 1959.

    Google Scholar 

  5. M. Wolf (1960), ‘Limitations and possibilities for improvement of photovoltaic solar energy converters’ Proc. IRE 48, July 1960.

    Google Scholar 

  6. M. Wolf (1975), ‘Outlook for Si photovoltaic devices for terristrial solar energy utilization’ J. Vac. Sci. Technol. 12, Sep.-Oct. 1975.

    Google Scholar 

  7. H. Fishcher (1974), ‘Physics and Technology of photvoltaic solar energy conversion’ Advances in Solid state Physics, Festkorperprobleme xiv, Pergamon Press, Oxford, 1974.

    Google Scholar 

  8. H.J. Hovel (1976), ‘Solar cells for terristrial applications’ ISES Conference, Winnipeg, Canada, 1976, Vol. 6.

    Google Scholar 

  9. R.B. Godfrey and M.A. Green (1978), ‘A review of current solar cell Technology’ MONITOR -Proc. of IREE, Australia, pp. 87–90.

    Google Scholar 

  10. J.C.C. Fan (19 7 8), ‘Solar cells: Plugging into the Sun’ Technology Review, August/September 1978, pp. 2–19.

    Google Scholar 

  11. H.J. Howel (1980), ‘Photovoltaic materials and devices for terristrical solar energy applications’ Solar Energy Materials, 2, 27 7–312.

    Google Scholar 

  12. K.W. Boer (1976), ‘The physics Solar Cells’ J. Appl. Phys., 50 (8), 5236–5370.

    Google Scholar 

  13. K.W. Boer (1979), ‘The Physics and Chemistry of Solar Cells’ J. of Photochemistry, 10, 77–110.

    Google Scholar 

  14. SERI (1984), ‘SERI Photovoltaic Advanced Research and Development-An Overview’ Report No. SERI/SP-281-2235, Solar Energy Research Institute, Golden, Colorado, USA.

    Google Scholar 

  15. R.N. Hall (1981), ‘Silicon photovoltaic cells’ Solid State Electronics, 24, 595–616.

    Google Scholar 

  16. J.R. Bolton (1983), ‘Solar cells-A technological assessment’ Solar Engergy, 31 (5), 483–502.

    Google Scholar 

  17. J.L. Smith (1981), ‘Photovoltaics’ Science, 212, 1472–1478 ).

    Google Scholar 

  18. C.E. Backus (1979), ‘An overview of photovoltaic power systems’ ASME Publication No. 79-SOL-12. AS ME, New-York.

    Google Scholar 

  19. J.J. Loferski (1979), ‘Thin films and solar energy applications’ Surface Science, 86, 424–443.

    Google Scholar 

  20. H. Fischer and Roy (1980), ‘Solar Cells’ Inst.Phys, Conf. Ser. No. 53, pp. 55–74.

    Google Scholar 

  21. H.J. Hovel (1980), ‘Solar Cells-where are we’ Chemtech, 9, 191–200.

    Google Scholar 

  22. G.L. Yaws et al(1979), ‘New Technologies for solar energy silicon: Cost analysis of UCC Silane process’ Solar Energy, 22, 547–553.

    Google Scholar 

  23. P.T. Landsberg (1975), ‘An introduction to the theory of photvoltaic cells’ Soild-State Electronics, 18, 1043–1052.

    Google Scholar 

  24. S.K. Deb and W.I. Wallace (1980), ‘Status of nonsilicon photovoltaic solar cell research’ Role of Electro-Optics in photovoltaic Energy Conversion (Editor S.K. Deb), Vol. 248, Society of Photooptical and Instrumentation Engineers, Bellingham, Washington, pp. 38–55.

    Google Scholar 

  25. M. Wolf (1981), ‘Photovoltaic solar energy conversion systems’ Chapter 24, Solar Energy Handbook (Editors J.F. Kreider and F. Kreith), McGraw Hill Book Co., Newyork, pp. 24. 1–24. 3 5.

    Google Scholar 

  26. J.A. Merrigan (1975), ‘Sunlight to electricity’ The M. I. T.Press, Cambridge, Massachusetts, USA.

    Google Scholar 

  27. H.J. Hovel (1975), ‘Solar Cells’ Vol 11 of Semiconductors and Semimetals (Editors R.K. Willardson and A.C. Beer), Academic Press, Inc., NewYork, USA.

    Google Scholar 

  28. R.C. Neville (1978), ‘Solar Energy Conversion: The Solar Cell’ Elsevier Scientific Publishing Company, Amsterdam.

    Google Scholar 

  29. T.J. Coutts and J.D. Meakin (Editors) (1985), ‘Current topics in Photovoltaics’ Academic Press, Inc., London, U.K.

    Google Scholar 

  30. P.D. Maycock and E.N. Stirewalt (1981), ‘Photovoltaics’ Brick House Publishing Co., Andover, Masachusetts, USA.

    Google Scholar 

  31. K.L. Chopra and S.R. Das (1983), ‘Thin film solar cells’ Plenum Press, NewYork.

    Google Scholar 

  32. C. Backus (Editor) (1976), ‘Solar Cells’ IEEE Press, New York, USA.

    Google Scholar 

  33. W. Palz (1978), ‘Solar Electricity, An economic approach to Solar Energy’ Butterworths-UNESCO, New York, USA.

    Google Scholar 

  34. W.D. Johnston, Jr. (1980), ‘solar voltaic Cells’ Marcel Dekker, New York, USA.

    Google Scholar 

  35. D.L. Pulfrey (1978), ‘Photovoltaic power generation’ Van Nostrand Reinhold, New York, U.S.A.

    Google Scholar 

  36. H.S. Rauschenback (1980), ‘Solar cell array design handbook’ Van Nostrand Reinhold, New York, USA.

    Google Scholar 

  37. M.A. Green (1982), ‘Solar cells’ Prentice Hall, Englewood Cliffs, New Jersey, USA.

    Google Scholar 

  38. A. L. Fahrenbruch and R.H. Bube (1983), ‘f undamentals of Solar Cells’ Academic Press, New York, USA.

    Google Scholar 

  39. S.J. Fonagh (1981), ‘Solar cell device Physics’ Academic Press, New york, USA.

    Google Scholar 

  40. M. Sittig(1979), ‘Solar cells for photovoltaic generation of electricity’ Noyes Data Corporation, Park Ridge, New Jersey, USA.

    Google Scholar 

  41. Proc. of IEEE Photovoltaic Specialists Conference, held at 18 month intervals. The 18th IEEE photovoltaic specialists conference was held in las Vegas, IEEE, New York 1985.

    Google Scholar 

  42. Proc. of the (European) Photovoltaic Solar Energy Conference, also held at 18 month intervals. The 6th was held at London, April 1985, D.Reidel Publishing Co., Holland.

    Google Scholar 

  43. S. Pizzini (1982), ‘Solar grade silicon as a potential candidate material for low-cost terristrial solar cells’ Solar Energy Materials, 6, 253–297.

    Google Scholar 

  44. E.A. Perez-Albuerne and Y. Tyan (1980), ‘Photovoltaic Materials’ Science, 208, 902–907.

    Google Scholar 

  45. D. Elwell (1981), Current trends in silicon research Prog. Crystal Growth Charact., 4, 297–316.

    Google Scholar 

  46. W. Paul and D.A. Anderson(1981), ‘Properties of amorphous hydrogenated silicon, with special emphasis on preparation by sputtering’ Solar Energy Materials, 5, 229–316.

    Google Scholar 

  47. J. J.Loferski (1980), ‘Photovoltaic Materials’ chapter 18 from Book Solar Energy Technology Handbook, Part A (Editors W.C. Dickinson and P.N. Cheremisinoff), Marcel Dekker, Inc., New York.

    Google Scholar 

  48. E. Bucher (1978), ‘Solar cell materials and their basic parameters’ Appl.Phys., 17, 1–25.

    Google Scholar 

  49. H.J. Hovel (1980), ‘Photovoltaic materials and devices for terristrial solar energy applications’ solar Energy Materials, 2, 277–312.

    Google Scholar 

  50. S. Pizzini (1982), ‘solar grade silicon as a potential candidate material for low-cost terristrial solar cells’ Solar Energy Materials, 6, 253–297.

    Google Scholar 

  51. R. Fornari (1985), ‘Optimal growth conditions and main features of GaAs single crystals for solar cell technology: A review’ Solar Energy Materials, 11, 361–379.

    Google Scholar 

  52. M. Schoijet (1979), ‘Possibilities of New materials for solar photovoltaic cells’ Solar Energy Materials, 1, 43–57.

    Google Scholar 

  53. C.L. Yaws et al (1979), ‘Polysilicon Production: Cost analysis of conventional process’ Solid-State Technology, Jan. 1979, 63–67.

    Google Scholar 

  54. F. Fischer and W. Pschunder (1976), ‘Low cost solar cells based on large area unconventional silicon’ 12th IEEE Photovoltaic Specialists Conf., Baton Route, LA, p. 86.

    Google Scholar 

  55. T.L. Chu et al (1978), ‘Thin film polycrystalline silicon solar cells’ 13th IEEE Photovoltaic Specialists Conf., Washington D.C., p.1106.

    Google Scholar 

  56. P.W. Chapman et al (1979), ‘Silicon-on-ceramic process’ Quarterly Report No.11, DOE/JPL 954356-79/1, April 1979.

    Google Scholar 

  57. C.P. Khattak and F. Schmid (1980), ‘Low cost conversion of polycrystalline silicon into sheet by HEM and FAST’ 14th Photovoltaic Specialists Conf. San Diego, California, IEEE New York, 484–487.

    Google Scholar 

  58. J.P. Kaleys, B.H. Mackintosh, E.M. Sachs and F.V. Wald (1980), ‘Progress in the growth of wide ribbons by the EFG-technique at high speed using multiple growth tstions’ 14th Photovoltaic Specialists Conf., San Diego, California, IEEE New york, 13–18.

    Google Scholar 

  59. Annon (1981), ‘New process for making silicon ribbon may lead to low-cost solar cells’ Amer. Ceramic bull., 60 (1), 162.

    Google Scholar 

  60. A.S. Taylor, R.W. Stormont, C.C. Chao and E.J. Henderson (1981), ‘Large area silicon sheet via EFG tube growth’ 15th photovoltaic specialists conf., Kissinmce, Florida, May 1981, IEEE New York, 1471 pp.

    Google Scholar 

  61. C.F.A. Van Os, J.L.P.W. Verpalen and J. Bezemer (1984), ‘Po1ycrysta11ine silicon ribbons for solar cells prepared by fast cooling’ Solar Energy Materials, 10, 209.

    Google Scholar 

  62. T.L. Chu, S.S. Chu, and E.D. Stokes (1980), ‘Large grain silicon films on metallurgical silicon substrates for photovoltaic applications’ Solar Energy Materials, 2, 265.

    Google Scholar 

  63. B.L. Sopori and R.A. Pryor (1984), ‘Towards high efficiency polycrystalline silicon solarcells’ Solar -cells, 12, 205–210.

    Google Scholar 

  64. A. Madan, ‘Amorphous Silicon Solar Cells’ Chapter in Silicon Processing for Photovoltaics (editors K.V. Ravi and C.P. Khallak)., North Holland Publishing Co.

    Google Scholar 

  65. A. Madan (1982), ‘Thin film amorphous silicon solar cells’ Solar Energy, 29 (3), 225–233.

    MathSciNet  Google Scholar 

  66. Y. Hamakawa (1985), ‘Recent advances in amorphous silicon solar cell Technology’ ASSETT, 7 (2), 23–27.

    Google Scholar 

  67. Y. Hamakawa (1982), ‘Recent advances in amorphous silicon solar cells’s Solar Energy Materials, 8, 101–121.

    Google Scholar 

  68. Y. Hamakawa (1985), ‘Recent progress of amorphous silicon technology and its application to optoelectronic devices’ Applications of surface science, 22 /23, 859–878.

    Google Scholar 

  69. A.K. Barua (1985), ‘Amorphous silicon thin film solar cells’ From the book photovoltaic Materials and Devices (Editors B.K. Das and S.N. Singh). Wiley Eastern Ltd., New Delhi.

    Google Scholar 

  70. D.E. Carlson (1980), ‘Recent developments in Amorphous silicon solar cells’ Solar energy Materials, 3, 503–518.

    Google Scholar 

  71. H.K. Charles Jr. and A.P. Ariotedjo (1980), ‘Review of amorphous and polycrystalline thin-film silicon solar cell performance parameters’ Solar Energy, 24, 329–339.

    Google Scholar 

  72. D.E. Carlson (1980), ‘An overview of amorphous silicon solar-cell development’’Proc. 14th photovoltaic Specialists Conf., San Diego, California, 1980, IEEE New York, pp.291–297.

    Google Scholar 

  73. J.I.B. Wilson (1980), ‘Amorphous silicon’ Sun World, 4 (1), 14–15.

    Google Scholar 

  74. D. Adler(1980), ‘Amorphous silicon solar cells’ Sun world, 4(1), 16–19.

    Google Scholar 

  75. Y. Hamakawa (1982), ‘Recent progress of amorphous-silicon solar cell technology in Japan’ Int. J. Solar Energy, 1, 33–53.

    Google Scholar 

  76. A. David (1977), ‘Amorphous Semiconductor devices’ Scientific American, May 1977, 36–48.

    Google Scholar 

  77. A.P. Ariotedjo and H.J. Charles Jr. (1979), ‘A review of amorphous and polycrystalline thin film silicon solar cell performance parameters’ Solar Energy, 24, 329–339.

    Google Scholar 

  78. D.E. Carlson (1980), ‘Photovoltaies V: Amorphous silicon cells’ IEEE-Spectrum, 17, 39–41.

    Google Scholar 

  79. D.E. Carlson and C.R. Wronski (1976), ‘Amorphous silicon solar cell’ Appl. Phys. Lett., 28, 671.

    Google Scholar 

  80. RCA Lab. (1977), ‘Amorphous silicon solar cells’ ERDA Contract EY-76-C-03-1268, Annual Report 1977.

    Google Scholar 

  81. J.L. Crowley (1985), ‘Amorphous silicon bibliography 1984 update introduction’ Solar Cells, 14, 301–394 (more than 601 references are listed).

    Google Scholar 

  82. F. Demichelis, A. Tagliaferro and E. Tresso (1985), ‘A model for amorphous solar cell analysis’ Solar cells, 14, 149–156.

    Google Scholar 

  83. D.E. Carlson (1984), ‘Projections for amorphous silicon photovoltaics’ Solar Cells, 12, 41–43.

    Google Scholar 

  84. J.L. Stone (1984), ‘The future of amorphous silicon: If, When and How’, Solar cells, 12, 211–216.

    Google Scholar 

  85. K.W. Boer (1982), ‘The CdS/Cu2S Solar Cell’ J. of Crystal Growth’ 59, 111–120.

    Google Scholar 

  86. K.W. Boer (1981), ‘The CdS/Cu2S Solar Cell’ Phy. Stat. Sol. (a), 11–43.

    Google Scholar 

  87. J.A. Bragagnolo, A.M. Barnett, J.E. Phillips, R.B. Hall, A. Rothwarf, and J.D. Meakin (1980), ‘The design and fabrication of thin film CdS/Cu2S cells of 9.15 percent efficiency’ IEEE Trans. Elect. Dev. Ed-27(4), 645–651.

    Google Scholar 

  88. A.M. Barnett and A.Rothwarf (1980), ‘Thin film solar cells: a unified analysis of their potential’ IEEE Trans. Elect. Dev. Ed-27(4), 615–630.

    Google Scholar 

  89. A. Rothwarf (1980), ‘The CdS/Cu2S solar cell: Basic operation and anomolous effects’ Solar Cells, 2, 115–140.

    Google Scholar 

  90. A.M. Barnette and J.D. Meakin (1979), ‘Low cost thin film CdS-based solar cells - progres s and promise’ A S M E Publication No.79 - S0L-15, ASME, New York.

    Google Scholar 

  91. F.A. Shirland (1966), ‘The history, Design, Fabrication and performance of CdS thin film solar cells’ Advanced Energy Conversion, 6, 201–222.

    Google Scholar 

  92. S. Oktik, G.J. Russell and J. Woods (1983), ‘Single crystal Cu2S/CdS photovoltaic devices with optimum performance before a post barrier air bake’ Solar Energy Materials, 9, 77.

    Google Scholar 

  93. F. Ffisterer and W.H. Bloss(1984), ‘Development of Cu2S/CdS thin film solar cells and transfer to indus¬trial production’ solar Cells, 12, 155–161.

    Google Scholar 

  94. M. Yamada, A. Kitamura, T. Yamaguchi, M. Kawashima, K. Motoyoski, S. Iguchi, and Y. Sasatani (1983), ‘Gallium Arsenide Concentrator Solar Cells’ Sumitomo Electric Technical Review, 22, 243–250.

    Google Scholar 

  95. J.C.C. Fan, C.O. Bozler and R.W. McClelland (1981), ‘Thin film GaAs solar cells’ Proc. 15th Photovoltaic Specialists Conf. Kissimmce, Florida, IEEE Newyork, pp. 666–672.

    Google Scholar 

  96. R.J. Boettcher, P.G. Borden and P.E. Gregory (1981), ‘Temperature dependence of the efficiency of an AlGaAs/ GaAs solar cell operating at high concentration’ IEEE-ED Lett. EDL-2(4), 88.

    Google Scholar 

  97. R.D. Durpuis, P.D. Dapkus, R.D. Yingling, and L.A. Moudy (1977), ‘High efficiency CaAlAs/GaAs heterostructure solar cells grown by metalorganic chemical vapor deposition’ Appl. Phys. Lett., 31, 201.

    Google Scholar 

  98. R. Sahai et al(1978), ‘High efficiency AlGaAs/GaAs Concentrator solar cell development’ 13th IEEE Photovoltaic Specialists Conference, Washington, D.C., pp. 946–952.

    Google Scholar 

  99. D.J. Mbewe, H.C. Card and D.C. Card (1985), ‘A model of silicon solar cell for concentrator photovoltaic and photovoltaic/thermal system design’ Solar Energy, 35 (3), 247–258.

    Google Scholar 

  100. D.L. Marchi (1977), ‘Design and construction of a one kilowatt concentrator photovoltaic systems’ Report No. SAND 77 - 0909, Sandia Laboratories, Albuquerque, NewYork.

    Google Scholar 

  101. J.A. Castle (Editor) (1976), ‘Investigation of terristrial photovoltaic power system with sunlight concentration’ Report No.SAND 77-7006, Sandia Laboratories, Albuquerque, New Mexico.

    Google Scholar 

  102. C.E. Backus (Editor) (1977), ‘Terristrial photovoltaic power systems with sunlight concentration’ Report No. SAND 77-7027, Sandia Laboratories, Albuquerque, New Mexico.

    Google Scholar 

  103. L.S. Napoli (1977), ‘High level concentrations of sunlight on silicon solar cells’ RCA Review, 38 (1), March 1977.

    Google Scholar 

  104. J.A. Castle and G.P. Anaston (1978), ‘System design report for a 10-kilowatt photovoltaic concentrator system’ Report No. SAND 78 - 7025, Sandia Laboratories, Albuquerque, New Mexico.

    Google Scholar 

  105. R.L. Donovan and S. Broadbent (1978), ‘10-kilowatt photo-voltaic concentrator array’ Report No.SAND 78 - 7024, Sandia Laboratories, Albuquerque, New Mexico.

    Google Scholar 

  106. E.L. Burgers (1977), ‘Photovoltaic Energy conversion using concentrated sunlight’ Optical Engineering, Novermber 16, No.3, May–June 1977.

    Google Scholar 

  107. E.C. Boes (1980), ‘Photovoltaic concentrators’ Proc. 14th photovoltaic specialists conf., San Diego, California, Jan. 1980, IEEE, NewYork, pp. 994–1003.

    Google Scholar 

  108. E.L. Burgess (1979), ‘Photovoltaic concentrator system technology and applications experiments’ ASME Pub. No.79 - Sol-9, united Engineering Centre, 345 East 47th Street, NewYork, 11 pp.

    Google Scholar 

  109. C.E. Backus (1980), ‘Photovoltaics III: concentrators’ IEEE Spectrum, 17 (2), 34–36.

    MathSciNet  Google Scholar 

  110. M.W. Edenburn, D.G. Schueler and E.C. Boes (1978), ‘Status of the DOE photovoltaic concentrator Technology Development project’ 13th IEEE Photovoltaic Specialists Conference, Washington, D.C., pp. 1028–1039.

    Google Scholar 

  111. A. Bennett and L.C. Olson (1978), ‘Analysis of multiple cell concentrator/photovoltaic system’ 13th IEEE Photo-voltaic Specialists Conference, Washington,D.C.

    Google Scholar 

  112. 112.Y. W. Lam (1981), ‘Min. M.I.S. Schottky barrier solar cells a review’ The Radio and Electronics Engineer, 51 (9), 447–454.

    Google Scholar 

  113. M.A. Green and R.B. Godfrey (1976), ‘MIS solar cell- general theory and new experimental results for silicon’ Appl. Phys. Letters, 29, 610–612.

    Google Scholar 

  114. W.A. Anderson and A.E. Delakoy (1972), ‘Schottky barrier diodes for solar energy conversion’ Proc. IEEE, 60, 1457–1458.

    Google Scholar 

  115. D.L. PurIfrey and R.F. McQuat (1974), ‘Schottky-barrier solar cell calculations’ Appl. Phys. Letters, 24, 167–169.

    Google Scholar 

  116. W.A. Anderson, A.E. Delahoy and R.A. Milano (1974), ‘A 8 percent efficient layered Schottky-barrier solar cell’ J.Appl. Physics., 45, 3913–3915.

    Google Scholar 

  117. R.B. Godfrey and M.A. Green (1980), ‘High efficiency silicon min-MIS solar cells-design and experimental results’ IEEE Trans. Elect. Dev. ED-27(4), 737–745.

    Google Scholar 

  118. J.I.B. Wilson et al (1978), ‘MIS solar cells on amorphous silicon’ 13th IEEE Photovoltaic Specialists Conf. Washington, D.C., 751.

    Google Scholar 

  119. A.S. Grove (1967), ‘Physics and Technology of Semi-conductor Devices’ John Wiley and Sons, Inc., NewYork.

    Google Scholar 

  120. S. Wang (1966), ‘Solid State Electronics’ McGraw Hill Book Co., Inc., NewYork.

    Google Scholar 

  121. A. Van Der Ziel (1976), ‘Solid State Physical Electronics’ Prentice Hall, Englewood Cliffs, N.J., USA.

    Google Scholar 

  122. W. Shockley (1950), ‘Electrons and holes in semiconductors’ Van Nostrand, Rheinhold, NewYork.

    Google Scholar 

  123. V. Azaroff and J.J. Brophy (1963), ‘Electronic Processes in Materials’ McGraw-Hill Book Co., Inc., NewYork.

    Google Scholar 

  124. J.I. Pankove (1971), ‘Optical processes in semi-conductors’ Prentice Hall, Englewood Cliffs, N.J., USA.

    Google Scholar 

  125. S.M. Sze (1969), ‘Physics of semiconductor devices’ John Wiley and Sons, Inc., NewYork.

    Google Scholar 

  126. J.P. Mc kelvey (1966), ‘Solid State and Semiconductor Physics’ Harper and Row, Newyork.

    Google Scholar 

  127. E.S. Heavens (1955), ‘Optical properties of thin solid films’ Butterworths, London.

    Google Scholar 

  128. D.M. Caughey and R.E. Thomas (1967), ‘Carrier mobilities in silicon empirically related to do** and field’ Proc. IEEE, 55, 2192–2193.

    Google Scholar 

  129. T.S. Moss, G.J. Burell, and B. Ellis (1973), ‘Semiconductor opto Electronics’ butterworths, London.

    Google Scholar 

  130. W.C. Dash and R. Newman (1955), ‘Phys. Rev., 99, 1151’.

    Google Scholar 

  131. S. Marinuzzi, M. Perrot and J. Fourmy (1964), J. de phys. 25, 203.

    Google Scholar 

  132. V.S. Bagaer and I.I. Paduchikh (1970), Sov. Phys. Sol. State. 11, 2676.

    Google Scholar 

  133. K. Mitchell, A.L. Fahrenbrach and R.H. Bube (1977), J.Appl. Phys., 48, 829.

    Google Scholar 

  134. M. Cardona and G. Herbeke (1965), 137, 1467.

    Google Scholar 

  135. E.Y. Wang et al (1973), ‘Optimum design of antireflective coatings for silicon solar cells’ proc. 10th IEEE photovoltaic Specralists Conf., Palo Alto, p.168.

    Google Scholar 

  136. G. Seibert (1969), ‘Technical Note ESROTH-90 ESTEC.’

    Google Scholar 

  137. K. Kern and E. Tracy (1980), RCA Review, 41, 133.

    Google Scholar 

  138. Y.C.M. Yeh, F.P. Ernest and R.J. Stirn (1976), J.Appl. Phys., 47, 4107.

    Google Scholar 

  139. B. Gandham, R. Hill, H.A. MacLeod and M. Bowden (1979), Solar Cells, 1, 3.

    Google Scholar 

  140. P.H. Berning (1962), J.Opt. Soc. Am., 52, 431.

    Google Scholar 

  141. M.G. Coleman et al (1976), ‘Processing Ramifications of textured surfaces’ Proc. 12th IEEE Photovoltaic Specialists Conf., Baton Rouge, pp. 313–316.

    Google Scholar 

  142. A. Rothwarf and K.W. Boer (1975), Progress in Solid State Chemistry, 10, 71.

    Google Scholar 

  143. M.J. Wolf (1972), ‘The fundamentals of improved silicon solar cell performance’ chapter 4, ‘Solar cells: Outlook for improved efficiency’, National Academy of Sciences, Washington, D.C. 1972.

    Google Scholar 

  144. C.H. Henry (1980), J.Appl. Phys., 51, 4494.

    Google Scholar 

  145. NASA (1977), ‘Terristrial photovoltaic measurement procedures’ Report No. ERDA/NASA/1022-77/16, June 1977, NASA TM 73702, NASA-Lewis Res. Cent., Cleveland, Ohio, USA.

    Google Scholar 

  146. D.L. Pulfrey and R.F. McQuat (1974), Appl. Phys. Lett., 24, 167.

    Google Scholar 

  147. G.K. Teal and E. Buehler (1952), ‘Phys. Rev., 87A, 190’.

    Google Scholar 

  148. C.L. Yaws et al (1979), ‘Polysilicon production: cost analysis of conventional process’ Solid State Technology,’ January 1979, 63–67.

    Google Scholar 

  149. U.S. Patent 2943918 assigned to Pechiney.

    Google Scholar 

  150. H. Yoo et al (1978), ‘Analysis of ID saw slicing for silicon for low cost solar cells’ Proc. 13th photovoltaics Specialists Conference, Washington, D.C., 1978, pp. 147–151.

    Google Scholar 

  151. C.P. Khallak and F. Schmid (1980), Proc. 14th IEEE Photovoltaics Specialists Conf., 1980, p. 484.

    Google Scholar 

  152. T.E. Ciszek (1 9 7 2), Mater, Res. Bull., 7, 731.

    Google Scholar 

  153. T.F. Ciszek, G.H. Schwuttke, K.H. Yang (1979), IBM Journal of Res. and Dev., vol. 5, May 1979.

    Google Scholar 

  154. K.V. Ravi, H.E. Serreze, H.E. Bates, A.D. Morrison, D.N. Jewett, and J.C.T. Ho (1975), Proc. 11th IEEE Photovoltaic Specialists Conf., p. 280.

    Google Scholar 

  155. R.K. Riel (1973), ‘Status of silicon web solar cells’ Proc. Photovoltaic conversion of Solar Energy for Terrestrial Applications, NSF-RANN Workshop, Cherry Hill, New Jersey, Report No.NSF-RANN 74 — 13, p. 36. vol. 2

    Google Scholar 

  156. G.H. Schwuttke (1979), ‘Low cost polycrystalline silicon’ proc. Und EC Photovoltaic Solar Energy Conf., Berlin, April 1979, D.Reidel Pub.Co.Dordrecht, pp. 130–144.

    Google Scholar 

  157. R.J. Van Overstraeten (1980), ’Advances in silicon solar cell processing; Proc. IIIrd Photovoltaic Solar Energy Conf., October 27–31, 1980, Cannes, France, D. Reidel Publishing Company, Holland pp. 257–262.

    Google Scholar 

  158. J. Mandelkorn, C. McAffee, J. Kesperis, L. Sehwartz, and W.J. Pharo (1962), J. Electrochem.Soc., 109, 313.

    Google Scholar 

  159. E.C. Douglas and R.V.D. Ajello (1980, proc. 14th Photo-voltaic Specialists conference, IEEE, 1980.

    Google Scholar 

  160. T.L. Chu, H.C. Mollenkopf and S.S. Chu (1975), Electrochem, Soc., 12, 1681.

    Google Scholar 

  161. T.L. Chu, J.C. Lien, H.C. Mollenkopf, S.S. Chu and K.W. Heizer (1975), Solar Energy, 17, 229.

    Google Scholar 

  162. T.L. Chu, G.A. Van der Leeden and H.I.Yoo (1978), J.Electrochem. Soc. 125, 661.

    Google Scholar 

  163. W.A. Anderson, A.E. Delahoy, and R.A. Milano (1974), J. Appl. Phys., 45, 3913.

    Google Scholar 

  164. E.J. Charlson and J.C.Lien (1975), ‘An AI p-silicon MOS photovoltaic cell’ J.Applied Physics, 46, 3982.

    Google Scholar 

  165. P. Van Halen et al (1978), ‘New TiOx/MIS and Si02/MIS silicon solar cells’ IEEE Trans on Electron Devices, ED- 2 5, 50 7.

    Google Scholar 

  166. R. Suryanarayanan, M. Rodot and J.E. Bouree (1985), ‘New approaches for polysilicon solar cells’ Proc. Photovoltaic Materials and Devices (Editors B.K. Das and S.N. Singh), Wiley Easten Ltd., New Delhi, pp. 75–86.

    Google Scholar 

  167. A.K. Ghosh (1978), ‘Heterostructure single crystal silicon photovoltaic cell Sn02/Si’ Proc. SERI Photovoltaics Advances Materials Review Meeting, Report No.SERl/TP-49- 105, p. 227.

    Google Scholar 

  168. R.C. Chittick, J.H. Alexander and H.F. Sterling (1969), J.Electrochem.Soc., 116, 77.

    Google Scholar 

  169. W.E. Spear and P.G. LeComber (1975), ‘Substantial do** of amorphous silicon’ Solid State Comm., 17, 1193.

    Google Scholar 

  170. W.E. Spear et al (1973), ‘Photoconductivity and absorption in amorphous Si’ J. Non-Crystalline Solids, 13, 55.

    Google Scholar 

  171. H. Okamoto, Y. Hamakawa et al (1980), J.Non-Crys. Solids, 35 and 36, 1980.

    Google Scholar 

  172. Y. Tawada, T. Yamaguchi, S. Nonomura, M. Kondo, H. Okamoto and Y. Hamakawa (1980), Proc. 2nd Photovoltaic Sci. and Eng. Conf. in Japan, Tokyo 1980 and Japan J.Appl. Phys. 20, 213.

    Google Scholar 

  173. D.E. Carlson and C.R. Wronski (1977), J.Electron.Mater., 6, 95.

    Google Scholar 

  174. H. Okamoto, Y. Nitta, T. Adachi and Y. Hamakawa (1979), Surf. Sci., 86, 486.

    Google Scholar 

  175. D.E. Carlson (1977), IEEE Trans. Electron Devices, ED-24, 449.

    Google Scholar 

  176. Y. Tawanda. M. Kondo, H. Okamoto and Y. Hamakawa (1981), Proc. 15th IEEE Photovoltaic Specialists Conf., p. 245.

    Google Scholar 

  177. A. Catalano, A.D.’Aiello, J. Dresner, B. Faughnan, A. Firester, J. Kane, Z.E. Smith, H. Schade, G. Swartz and A. Triano (1982), Proc. 16th IEEE Photovoltaic Specialists Conf.

    Google Scholar 

  178. J.I.B. Wilson, J. McGill, and S. Kinmond (1 9 7 8), Nature, 272, 153.

    Google Scholar 

  179. J. McGill, J.I.B. Wilson and S. Kinmond (1979), J.Appl. Phys., 50, 548.

    Google Scholar 

  180. W. Den Boer and R.M. Van Strijp (198 2), Proc. Fourth European Community Photovoltaic Solar Energy Conference, Stresa,Italy, 1982, D.Reidel Pub.Co., The Netherlands.

    Google Scholar 

  181. E. Yablonovitchi and G.D. Cody (1982), IEEE Trans. Electron Devices, Vol.ED-29, p.300.

    Google Scholar 

  182. SERI (1984), ‘SERI Photovoltaic Advanced Research and Development: An Overview’ Report no. SERI/SP- 2 81 - 2 2 35, Solar Energy Research Institute, Golden, Colorado, USA.

    Google Scholar 

  183. J. Lindinayer and J. Allison (1972), Proc. 9th IEEE Photovoltaic Specialists Conference, p.123.

    Google Scholar 

  184. R.A. Arndt, J.F. Allison, J.F. Haynos and A. Meulenberg (1975), Proc. 11th IEEE Photovoltaic Specialists Conference, p. 40.

    Google Scholar 

  185. M.P. Godlewski, C.A. Baraona and H.W. Brandhorst (1973), Proc. 10th IEEE Photovoltaic Specialists Conference, p.40.

    Google Scholar 

  186. R. Fornari (1985), ‘Optimal growth conditions and main features of GaAs single crystals for solar cell technology: A review’ Solar Energy Materials, 11, 361–379.

    Google Scholar 

  187. J.M. Woodall and H.J. Hovel (1972), Appl.Phys. Lett., 21, 379.

    Google Scholar 

  188. L.W. James and R.L. Moon (1975), Appl. Phys. Lett., 26, 467.

    Google Scholar 

  189. D.C. Reynolds, G. Leies, L.I. Antes and R.E. Marburger (1954), Phys. Rev., 96, 533.

    Google Scholar 

  190. S. Deb (1982), ‘Project on cadmium sulphide solar cells’ Project report for the period May 1979–April 1981, Dept. of Electronics and Telecommunications Engineering, Jadavpur University, Calcutta.

    Google Scholar 

  191. F.A. Shirland (1976), ‘The history, design, fabrication and performance of CdS thin film solar cells’ Solar cells (Edited by C.E. Backus), IEEE Press, Newyork.

    Google Scholar 

  192. D.A. Hammond and F.A. Shirland (1959), Electron Components Conf., p.98.

    Google Scholar 

  193. R. Williams and R.H. Bube (19 60), J.App1.Phys., 31, 968.

    Google Scholar 

  194. K. W. Boer (1970), Final report, Contract 9 5 26 66, Jet Propulsion Lab., University of Delaware, Newark.

    Google Scholar 

  195. F. Pfisterer and W.H. Bloss (1984), ‘Development of Cu2S/CdS thin film solar cells and transfer to industrial production’ Solar Cells, 12, 155–161.

    Google Scholar 

  196. F. Pfisterer and W.H. Bloss (1986), ‘Polycrystal line thin film solar cells-state of the art’ Proc. 2nd Int. PVSES, Bei**g, China, August, 1986.

    Google Scholar 

  197. J. Gu, T. Kitahara, S. Fujita, and T. Sakaguchi (1975), Jpn. J.Appl. Phys., 14, 499.

    Google Scholar 

  198. J. Aranovich, D. Golinayo, A.L. Fahrenbruch and R.H. Bube (1980), J.Appl.Phys., 51, 4260.

    Google Scholar 

  199. K. Takakaski and M. Konagai (1986), ‘Amorphous silicon solar cells’ North Oxford Academic Publishers Ltd., London.

    Google Scholar 

  200. H.P. Garg (1986), ‘Advances in Solar Energy Technology, Vol.1’ D. Reidel Publishing Co., Holland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1987 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Garg, H.P. (1987). Solar Cells. In: Advances in Solar Energy Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-3797-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-3797-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8189-4

  • Online ISBN: 978-94-009-3797-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation