Somatic Cell Genetic Analysis of Growth Control

  • Chapter
Advanced Research on Animal Cell Technology

Part of the book series: NATO ASI Series ((NSSE,volume 156))

  • 106 Accesses

Abstract

These last years, a growing number of altered genes have been implicated in neoplastic development. These genes, in their normal guise, are supposed to be involved in the control of cell growth. Two seemingly different groups of such growth control genes have been identified by different approches, on the one hand studies of highly oncogenic retroviruses and transfection experiments and on the other hand somatic cell hybridization experiments and studies of hereditary cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bishop JM: Trends in oncogenes. Trends Genet. 10, 245–249, 1985

    Article  Google Scholar 

  2. Harris H: The genetic analysis of malignancy. J. Cell Sci. Suppl. 4, 431–444, 1986.

    PubMed  CAS  Google Scholar 

  3. Klein G, Bregula U, Wiener F & Harris H: The analysis of malignancy by cell fusion: I. Hybrids between tumour cells and L cell derivatives. J. Cell Sci. 3, 659–672, 1971.

    Google Scholar 

  4. Stanbridge E, Channing J Der, Doersen CJ, Nishimi RY, Peehl DM, Weissman BE & Wilkinson JE: Human cell hybrids: analysis of transformation and tumorigenicity. Science 215, 252–259, 1982

    Article  PubMed  CAS  Google Scholar 

  5. Bos JJ, Toksoz D, Christopher CJ, Verlaan-de Vries M, Veeneman GH, van der Eb AJ, van Boom JH, Janssen JWG & Steenvoorden CM: Amino-acid substitutions at codon 13 of the N-ras oncogene in human acute myeloid leukaemia. Nature 315, 726–730, 1985.

    Article  PubMed  CAS  Google Scholar 

  6. Spira J, Wiener F, Babonits M, Gamble J, Miller J amp; Klein G: The role of chromosome 15 in murine leukemogenesis. I. Contrasting behavior of the tumor vs. normal parent-derived chromosome no.15 in somatic hybrids of varying tumorigenicity. Int. J. Cancer 28, 785–798, 1981.

    Article  PubMed  CAS  Google Scholar 

  7. Klein G & Klein E: Conditioned tumorigenicity of activated oncogenes. Cancer Res. 46, 3211–3224, 1986.

    PubMed  CAS  Google Scholar 

  8. Jonasson J, Povey S & Harris H: The analysis of malignancy by cell fusion. VII. Cytogenetic analysis of hybrids between malignant and diploid cells and of tumours derived from them. J. Cell Sci. 24, 217–234, 1977.

    PubMed  CAS  Google Scholar 

  9. Evans EP, Byrtenshaw MD, Brown BB, Hennion R & Harris H: The analysis of malignancy by cell fusion: IX. Re-examination and clarification of the cytogenetic problem. J. Cell Sci. 56, 113–130 1982.

    PubMed  CAS  Google Scholar 

  10. Srivatsan ES, Benedict WF & Stanbridge EJ: Implication of chromosome 11 in the suppression of neoplastic expression in human cell hybrids. Cancer Res. 46, 6174–6179, 1986.

    PubMed  CAS  Google Scholar 

  11. Murphree AL, Benedict WF: Retinoblastoma: clues to human oncogenesis. Science 221, 1028–1033, 1984.

    Article  Google Scholar 

  12. Orkin SH, Goldman DS & Sallan SE: Development of homozygosity for chromosome 11p markers in Wilms’ tumour. Nature 309, 172–174, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Solomon E, Voss R, Hall V, Bodmer WF, Jass JR, Jeffreys AJ, Lucibello FC, Patel I & Rider SH: Chromosome 5 allele loss in human colorectal carcinomas. Nature 328, 614–616, 1987

    Article  Google Scholar 

  14. Szpirer J, Szpirer C & Wanson JC: Control of serum protein production in hepatocyte hybridomas: Immortalization and expression of normal hepatocyte genes. Proc. Natl. Acad. Sci. USA 77, 6616–6620, 1980.

    Article  PubMed  CAS  Google Scholar 

  15. Szpirer C & Szpirer J: Suppression of the transformed phenotype of hepatoma cells after hybridization with normal diploid fibroblasts. Exp. Cell Res. 125, 305–312, 1980.

    Article  PubMed  CAS  Google Scholar 

  16. Szpirer J, Levan G, Thorn M & Szpirer C: Gene map** in the rat by mouse-rat cell hybridization: Synteny of the albumin and alpha-fetoprotein genes and assignment to chromosome 14, Cytogen. Cell Genet. 38, 142–149, 1984.

    Article  CAS  Google Scholar 

  17. Szpirer J, Islam MQ, Cooke N, Szpirer C & Levan G: Assignment of three rat genes coding for plasma proteins: transferrin, the third component of complement and beta-fibrinogen to chromosome 8, 9 and 2. Cytogenet. Cell Genet. (in press) 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Szpirer, J., Islam, M.Q., Levan, G., Szpirer, C. (1989). Somatic Cell Genetic Analysis of Growth Control. In: Miller, A.O.A. (eds) Advanced Research on Animal Cell Technology. NATO ASI Series, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0875-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0875-8_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6881-9

  • Online ISBN: 978-94-009-0875-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation