• 1368 Accesses

Abstract

Advances in the study of tropical cyclones using aircraft observations came about through improvements (scientific and technological) in the ability to observe different aspects of the storms. Early studies provided the basis for understanding tropical cyclone structure and evolution (for an excellent overview see Dorst, 2007). Technological advances in aircraft in-situ and remote sensing observing capabilities, particularly the development of airborne Doppler radars, revolutionized our depiction of tropical cyclone structure and dynamics (for a review see Marks, 2003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aberson, S.D. (2003). Targeted observations to improve operational tropical cyclone track forecast guidance. Mon. Wea. Rev., 131: 1613-1628.

    Article  Google Scholar 

  • Aberson, S.D., Black, M.L., Black, R.A., Burpee, R.W., Cione, J.J., Landsea, C.W. and Marks, F.D. (2006). Twenty-five years of tropical cyclone research with the NOAA P-3 aircraft. Bull. Amer. Meteor. Soc., 87: 1039-1055, doi: http://dx.doi.org/10.1175/BAMS-87-8-1039.

    Google Scholar 

  • Aksoy, A., Lorsolo, S., Vukicevic, T., Sellwood, K.J., Aberson, S.D. and Zhang, F. (2012). The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for high-resolution data: The impact of airborne Doppler radar observations in an OSSE. Mon. Wea. Rev., 140: doi: http://dx.doi.org/10.1175/MWR-D-11-00212.1

  • Barnes, G.M., Zipser, E.J., Jorgensen, D.P. and Marks, F.D. (1983). Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40: 2125-2137.

    Article  Google Scholar 

  • Barnes, G.M., Gamache, J.F., LeMone, M.A. and Stossmeister, G.J. (1991). A convective cell in a hurricane rainband. Mon. Wea. Rev., 119: 776-794.

    Google Scholar 

  • Barnes, G.M. and Powell, M.D. (1995). Evolution of the inflow boundary layer of Hurricane Gilbert (1988). Mon. Wea. Rev., 123: 2348-2368.

    Google Scholar 

  • Black, P.G. (1983). Ocean temperature changes induced by tropical cyclones. Ph.D. thesis, The Pennsylvania State University.

    Google Scholar 

  • Black, P.G., Elsberry, R.L., Shay, L.K., Partridge, R.P. and Hawkins, J.F. (1988). Atmospheric and oceanic mixed layer observations in Hurricane Josephine obtained from air-deployed drifting buoys and research aircraft. J. Atmos. Oceanic Technol., 5: 683-698.

    Article  Google Scholar 

  • Black, P.G. and Holland, G.J. (1995). The Boundary Layer of Tropical Cyclone Kerry (1979). Mon. Wea. Rev., 123: 2007-2028.

    Article  Google Scholar 

  • Black, P.G. et al. (2007). Air-sea exchange in hurricanes: Synthesis of observations from the coupled boundary layer air-sea transfer experiment. Bull. Amer. Meteor. Soc., 88: 357-374.

    Article  Google Scholar 

  • Black, R.A. and Hallett, J. (1986). Observations of the distribution of ice in hurricanes. J. Atmos. Sci., 43: 802-822.

    Article  Google Scholar 

  • Burpee, Robert W. et al. (1994). Real-Time Guidance Provided by NOAA’s Hurricane Research Division to Forecasters during Emily of 1993. Bull. Amer. Meteor. Soc., 75: 1765-1783.

    Article  Google Scholar 

  • Burpee, R.W., Franklin, J.L., Lord, S.J., Tuleya, R.E. and Aberson, S.D. (1996). The impact of Omega dropwindsondes on operational hurricane track forecast models. Bull. Amer. Meteor. Soc., 77: 925-933.

    Google Scholar 

  • Cione, J.J. and Uhlhorn, E.W. (2003). Sea surface temperature variability in hurricanes: Implications with respect to intensity change. Mon. Wea. Rev., 131: 1783-1796.

    Google Scholar 

  • Cione, J.J., Black, P.G. and Houston, S.H. (2000). Surface observations in the hurricane environment. Mon. Wea. Rev., 128: 1550-1561.

    Google Scholar 

  • D’Asaro, E.A. (2003). Performance of autonomous Lagrangian floats. J. Atmos. Oceanic Technol., 20: 896-911.

    Google Scholar 

  • Davis, W. R. (1954). Hurricanes of 1954. Mon. Wea. Rev., 82: 370-373.

    Google Scholar 

  • Dorst, N.M. (2007). The National Hurricane Research Project: 50 years of research, rough rides, and name changes. Bull. Amer. Meteor. Soc., 88: 1566-1588, doi: http://dx.doi.org/10.1175/BAMS-88-10-1566.

  • Franklin, J.L., Feuer, S.E., Kaplan, J. and Aberson, S.D. (1996). Tropical cyclone motion and surrounding flow relationships: Searching for beta gyres in omega dropwindsonde data sets. Mon. Wea. Rev., 124: 64-84.

    Google Scholar 

  • Franklin, J.L., Black, M.L. and Valde, K. (2003). GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18: 32-44.

    Article  Google Scholar 

  • Gall, R., Franklin, J., Marks, F.D., Rappaport, E.N. and Toepfer, F. (2012). The Hurricane Forecast Improvement Project. Bull. Amer. Meteor. Soc. (accepted).

    Google Scholar 

  • Gamache, J.F., Houze Jr., R.A. and Marks Jr., F.D. (1993). Dual-aircraft investigation of the inner core of Hurricane Norbert. Part III: Water budget. J. Atmos. Sci., 50: 3221-3243.

    Google Scholar 

  • Gentry, R.C. (1981). History of hurricane research in the United States with special emphasis on the National Hurricane Research Laboratory and associated groups. Preprints, 13th Technical Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL. Amer. Meteor. Soc.

    Google Scholar 

  • Gopalakrishnan, S., Marks, F.D., Zhang, J., Zhang, X., Bao, J.-W. and Tallapragada, V. (2012). A study of the impact of vertical diffusion on the structure and intensity of tropical cyclones using the high-resolution HWRF system. J. Atmos. Sci. (accepted).

    Google Scholar 

  • Govind, P.K. (1975). Dropwindsonde instrumentation for weather reconnaissance aircraft. J. Appl. Meteor., 14: 1512-1520.

    Article  Google Scholar 

  • Griffin, J.S., Burpee, R.W., Marks, F.D. and Franklin, J.L. (1992). Real-Time Airborne Analysis of Aircraft Data Supporting Operational Hurricane Forecasting. Wea. Forecasting, 7: 480-490.

    Article  Google Scholar 

  • Hock, T.F. and Franklin, J.L. (1999). The NCAR GPS Dropwindsonde. Bull. Amer. Meteor. Soc., 80: 407-420.

    Article  Google Scholar 

  • Houze, R.A., Marks Jr., F.D. and Black, R.A. (1992). Dual-aircraft investigation of the inner core of Hurricane Norbert. Part II: Mesoscale distribution of ice particles. J. Atmos. Sci., 49: 943-963.

    Google Scholar 

  • Ishihara, M., Yanagisawa, Z., Sakakibara, H., Matsuura, K. and Aoyagi, J. (1986). Structure of typhoon rainband observed by two Doppler radars. J. Met. Soc. Japan, 64: 923-939.

    Google Scholar 

  • Jaimes, B. and Shay, L.K. (2009). Mixed layer cooling in mesoscale oceanic eddies during Hurricanes Katrina and Rita. Mon. Wea. Rev., 137: 4188-4207.

    Google Scholar 

  • Jelesnianski, C.P., Chen, J. and Shaffer, W.A. (1992). SLOSH: Sea, lake and overland surges from hurricanes. NOAA Tech. Rep. NWS 48, Silver Spring, MD.

    Google Scholar 

  • Jorgensen, D.F. (1984a). Mesoscale and Convective-Scale Characteristics of Mature Hurricanes. Part I: General Observations by Research Aircraft. J. Atmos. Sci., 41: 1268-1286.

    Google Scholar 

  • Jorgensen, D.F. (1984b). Mesoscale and convective-scale characteristics of mature hurricanes. Part II: Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41: 1287-1311.

    Google Scholar 

  • Jorgensen, D.F., Hildebrand, P.H. and Frush, C.L. (1983). Feasibility test of an airborne pulse-Doppler meteorological radar. J. Climate Appl. Meteor., 22: 744-757.

    Google Scholar 

  • Malmquist, D.L. and Michaels, A.F. (2000). Severe storms and the insurance industry. Storms, Vol. I, Pielke Jr., R.A. and Pielke Sr., R.A. (eds), Routledge Press.

    Google Scholar 

  • Marks, F.D. (2003). State of the Science: Radar View of Tropical Cyclones. In: Radar and Atmospheric Science: A Collection of Essays in Honor of David Atlas. (Eds) R.M Wakimoto and R.C. Srivastava. Meteorological Monographs, 52: 33-74, AMS, Boston, MA.

    Google Scholar 

  • Marks, F.D. and Houze, R.A. (1984). Airborne Doppler Radar Observations in Hurricane Debby. Bull. Amer. Meteor. Soc., 65: 569-582.

    Article  Google Scholar 

  • Marks, F.D. and Houze, R.A. (1987). Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44: 1296-1317.

    Google Scholar 

  • Marks, F.D., Houze Jr., R.A. and Gamache, J.F. (1992). Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49: 919-942.

    Google Scholar 

  • Marks, F.D. and Shay, L.K. (1998). Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities. Bull. Amer. Meteor. Soc., 79: 305-323.

    Google Scholar 

  • Moller, J.D. and Montgomery, M.T. (1999). Vortex Rossby waves and hurricane intensification in a barotropic model. J. Atmos. Sci., 56: 1674-1687.

    Article  Google Scholar 

  • Moller, J.D. and Montgomery, M.T. (2000). Tropical cyclone evolution via potential vorticity anomalies in a three-dimensional balance model. J. Atmos. Sci., 57: 3366- 3387.

    Article  Google Scholar 

  • Montgomery, M.T. and Kallenbach, R. (1997). A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123: 435-465.

    Google Scholar 

  • Montgomery, M.T. et al. (2012). The Pre-Depression Investigation of Cloud-Systems in the Tropics (PREDICT) Experiment: Scientific Basis, New Analysis Tools, and Some First Results. Bull. Amer. Meteor. Soc., 93: 153-172, doi: http://dx.doi.org/10.1175/BAMS-D-11-00046.1

  • Nystuen, J.A. and Selsor, H.D. (1997). Weather classification using passive acoustic drifters. J. Atmos. Oceanic Technol., 14: 656-666.

    Article  Google Scholar 

  • Powell, M.D. (1990a). Boundary layer structure and dynamics in outer hurricane rainbands. Part I: Mesoscale rainfall and kinematic structure. Mon. Wea. Rev., 118: 891-917.

    Google Scholar 

  • Powell, M.D. (1990b). Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118: 918-938.

    Google Scholar 

  • Reasor, P.D., Montgomery, M.T., Marks, F.D. and Gamache, J.F. (2000). Low- wavenumber structure and evolution of the hurricane inner core observed by airborne dual-Doppler radar. Mon. Wea. Rev., 128: 1653-1680.

    Article  Google Scholar 

  • Rogers, R., Lorsolo, S., Reasor, P., Gamache, J. and Marks, F.D. (2012). Multiscale Analysis of Tropical Cyclone Kinematic Structure from Airborne Doppler Radar Composites. Mon. Wea. Rev., 140: 77-99, doi: http://dx.doi.org/10.1175/MWR-D-10-05075.1

  • Rogers, R. et al. (2006). The Intensity Forecasting Experiment: A NOAA Multiyear Field Program for Improving Tropical Cyclone Intensity Forecasts. Bull. Amer. Meteor. Soc., 87: 1523-1537, doi: http://dx.doi.org/10.1175/BAMS-87-11-1523

  • Ryan, B.E., Barnes, G.M. and Zipser, E.J. (1992). A wide rainband in a develo** tropical cyclone. Mon. Wea. Rev., 120: 431-437.

    Article  Google Scholar 

  • Sanford, T.B., Drever, R.G., Dunlap, J.H. and D’Asaro, E.A. (1982). Design, operation, and performance of an expendable temperature and velocity profiler (XTVP). Rep. APL-UW 8110, Applied Physics Laboratory, University of Washington. [Available from Applied Physics: Laboratory, University of Washington, 1013 NE 40th Street, Seattle, WA 98105.]

    Google Scholar 

  • Shapiro, L.J. and Franklin, J.L. (1995). Potential vorticity in Hurricane Gloria. Mon. Wea. Rev., 123: 1465-1475.

    Article  Google Scholar 

  • Shay, L.K., Elsberry, R.L. and Black, P.G. (1989). Vertical Structure of the Ocean Current Response to a Hurricane. J. Phys. Oceanogr., 19: 649-669.

    Article  Google Scholar 

  • Shay, L.K., Black, P.G., Mariano, A.J., Hawkins, J.D. and Elsberry, R.L. (1992). Upper- ocean response to Hurricane Gilbert. J. Geophys. Res., 97: 20,227-20,248.

    Article  Google Scholar 

  • Simpson, R.H. (1952). Exploring the eye of Typhoon “Marge,” 1951. Bull. Amer. Meteor. Soc., 33: 286-298.

    Google Scholar 

  • Simpson, R.H. (1954). Hurricanes. Scientific American, 109: 22-37.

    Google Scholar 

  • Simpson, R.H. (1981). Implementation phase of the National Hurricane Research Project 1955-1956. Preprints, 13th Technical Conf. on Hurricanes and Tropical Meteorology, Miami Beach, FL. Amer. Meteor. Soc.

    Google Scholar 

  • Simpson, R.H. (2001). The Hurricane and Its Impact. Louisiana State University Press.

    Google Scholar 

  • Simpson, R.H. (ed.) (2003). Hurricanes! Co** with Disaster. Amer. Geophys. Union.

    Google Scholar 

  • Simpson, R.H. and Riehl, H. (1981). The Hurricane and Its Impact. Louisiana State University Press.

    Google Scholar 

  • Sumner, H.C. (1943). North Atlantic hurricanes and tropical disturbances of 1943. Mon. Wea. Rev., 71: 179-183.

    Google Scholar 

  • Tabata, A., Sakakibara, H., Ishihara, M., Matsuura, K. and Yanagisawa, Z. (1992). A general view of the structure of Typhoon 8514 observed by dual-Doppler radar: From outer rainbands to eyewall clouds. J. Met. Soc. Japan, 70: 897-917.

    Google Scholar 

  • Uhlhorn, E.W., Black, P.G. (2003). Verification of Remotely Sensed Sea Surface Winds in Hurricanes. J. Atmos. Oceanic Technol., 20: 99-116.

    Article  Google Scholar 

  • Wexler, H. (1945). The structure of the September, 1944, hurricane when off Cape Henry, Virginia. Bull. Amer. Meteor. Soc., 26: 156-159.

    Google Scholar 

  • Whitehead, J.C. (2003). One million dollars per mile? The opportunity costs of hurricane evacuation. Ocean Coastal Manag., 46: 1069-1083.

    Google Scholar 

  • Willoughby, H.E., Clos, J.A., Shoreibah, M.G. (1982). Concentric Eye Walls, Secondary Wind Maxima, and the Evolution of the Hurricane vortex. J. Atmos. Sci., 39: 395- 411.

    Article  Google Scholar 

  • Wood, F.B. (1945). A flight into the September, 1944, hurricane off Cape Henry, Virginia. Bull. Amer. Meteor. Soc., 26: 153-156.

    Google Scholar 

  • Wroe, D.R. and Barnes, G.M. (2003). Inflow layer energetics of Hurricane Bonnie (1998) near landfall. Mon. Wea. Rev., 131: 1600-1612.

    Article  Google Scholar 

  • Zhang, F., Weng, Y., Gamache, J. and Marks, F.D. (2011a). Performance of convection- permitting hurricane initialization and prediction during 2008-2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett., 38, doi: http://dx.doi.org/10.1029/2011GL048469.

  • Zhang, J.A., Marks, F.D., Montgomery, M.T., Lorsolo, S. (2011b). An Estimation of Turbulent Characteristics in the Low-Level Region of Intense Hurricanes Allen (1980) and Hugo (1989). Mon. Wea. Rev., 139: 1447-1462, doi: http://dx.doi.org/10.1175/2010MWR3435.1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank D. Marks Jr. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Capital Publishing Company

About this chapter

Cite this chapter

Marks, F.D. (2014). Advancing Tropical Cyclone Forecasts Using Aircraft Observations. In: Mohanty, U.C., Mohapatra, M., Singh, O.P., Bandyopadhyay, B.K., Rathore, L.S. (eds) Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7720-0_15

Download citation

Publish with us

Policies and ethics

Navigation