Vesicular Basalts as a Niche for Microbial Life

  • Chapter
  • First Online:
Life on Earth and other Planetary Bodies

Abstract

The ongoing discovery of traces of microbial communities in locations on Earth where conditions are, or were, hostile to life suggests that unknown microbial ecosystems and habitats are yet to be detected. Volcanic environments on the ocean floor provide an important potential habitat for microbial life. Evidence of microbial activity and traces within the primary glassy rinds of basalts have revealed a highly complex microhabitat. Recent findings demonstrate that microbial activity and biodiversity in sub-seafloor volcanic rocks are also more differentiated than previously recognized. In addition to the glassy rinds of subsea pillow basalts, microbial ecosystems that have the potential to preserve traces of life in the geological record have been recognized in vesicular basalts. Here, we present a brief review of the evidence for endolithic microorganisms in volcanic basaltic rocks with an emphasis on the relatively poorly studied vesicular basalts that host microbial ecosystems. These types of habitats are of particular interest in the search for life on rocky, water-bearing terrestrial planets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    At present, the highest temperature known to permit growth and life is less than 113–121 °C (Takai et al., 2001; Kashefi and Lovley, 2003); however, higher temperatures may be tolerated during short-term survival.

6. References

  • Allen CC, Oehler DZ (2008) A case for ancient springs in Arabia Terra, Mars. Astrobiology 8:1093–1112

    Article  ADS  Google Scholar 

  • Alt JC (1995) Subseafloor processes in mid-ocean ridge hydrothermal systems. In: Humphris SE, Zierenberg RA, Mullineaux LS, Thomson RE (eds) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions, Geophysical monograph series, 91, pp 85–114

    Chapter  Google Scholar 

  • Amend JP, Teske A (2005) Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol 219:131–155

    Article  Google Scholar 

  • Baker VR (2001) Water and the martian landscape. Nature 412:228–236

    Article  ADS  Google Scholar 

  • Banerjee NR, Furnes H, Muehlenbachs K, Staudigel H, de Wit M (2006) Preservation of 3.4–3.5 Ga microbial biomarkers in pillow lavas and hyaloclastites from the Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 241:707–722

    Article  ADS  Google Scholar 

  • Bedard DL, Bailey JJ, Reiss BL, Van Slyke Jerzak G (2006) Development and characterization of stable sediment free anaerobic bacterial enrichment cultures that dechlorinate Aroclor 1260. Appl Environ Microbiol 72:2460–2470

    Article  Google Scholar 

  • Beveridge TJ (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annu Rev Microbiol 43:147–171

    Article  Google Scholar 

  • Bideau D, Hékinian R (1984) Segregation vesicles of ocean floor basalts 1. Petrological study of the segregation products. J Geophys Res 89:7903–7914

    Article  ADS  Google Scholar 

  • Carlut J, Horen H, Janots D (2007) Impact of micro-organisms activity on the natural remanent magnetization of the young oceanic crust. Earth Planet Sci Lett 253:497–506

    Article  ADS  Google Scholar 

  • Carr MH, Head JW III (2010) Geologic history of Mars. Earth Planet Sci Lett 294:185–203

    Article  ADS  Google Scholar 

  • Cavalazzi B, Westall F, Barbieri R (2008) (Crypto-)endoliths from vesicular pillow lavas, Coral Patch Seamount North Atlantic Ocean. Studi Trent Sci Nat Acta Geol 83:177–182

    Google Scholar 

  • Cavalazzi B, Westall F, Cady SL, Barbieri R, Foucher F (2011) Potential fossil endoliths in vesicular pillow basalt, Coral Patch Seamount, Eastern North Atlantic Ocean. Astrobiology 11:619–632

    Article  ADS  Google Scholar 

  • Cockell CS, Raven JA (2004) Zones of photosynthetic potential on Mars and the early Earth. Icarus 169:300–310

    Article  ADS  Google Scholar 

  • Cockell CS, Cady SL, McLoughlin N (2011a) Introduction: volcanism and astrobiology: life on Earth and beyond. Astrobiology 11:583–584

    Article  ADS  Google Scholar 

  • Cockell CS, Kelly LC, Summers S, Marteinsson V (2011b) Following the kinetics: iron-oxidizing microbial matsin cold icelandic volcanic habitats and their rock-associated carbonaceous signature. Astrobiology 11:679–694

    Article  ADS  Google Scholar 

  • Connell L, Barrett A, Templeton A, Staudigel H (2009) Fungal diversity associated with an active deep sea volcano: Vailulu‘u Seamount, Samoa. Geomicrobiol J 26:8597–8605

    Article  Google Scholar 

  • Cousins CR, Crawford IA (2011) Volcano-ice interaction as a microbial habitat on Earth and Mars. Astrobiology 11:695–710

    Article  ADS  Google Scholar 

  • D’Hondt S, Rutherford S, Spivack A (2002) Metabolic activity of subsurface life in deep-sea sediments. Science 295:2067–2070

    Article  ADS  Google Scholar 

  • Dartnell LR (2011) Ionizing radiation and life. Astrobiology 11:551–582

    Article  ADS  Google Scholar 

  • Edwards KJ, Bach W, McCollum TM, Rogers DR (2004) Neutrophilic iron-oxidizing bacteria in the ocean: their habitats, diversity, and roles in mineral deposition, rock alteration, and biomass production in the deep-sea. Geomicrobiol J 21:393–404

    Article  Google Scholar 

  • Edwards KJ, Bach W, McCollom T (2005) Geomicrobiology in oceanography: microbe-mineral interactions at and below the seafloor. Trends Microbiol 13:449–456

    Article  Google Scholar 

  • Eickmann B, Bach W, Kiel S, Reitner J, Peckmann J (2009) Evidence for cryptoendolithic life in Devonian pillow basalts of Variscan orogens, Germany. Palaeogeogr Palaeoclimatol Palaeoecol 283:120–125

    Article  Google Scholar 

  • Farmer JD, Des Marais DJ (1999) Exploring for a record of ancient martian life. J Geophys Res 104:26977–26995

    Article  ADS  Google Scholar 

  • Fisk MR, Giovannoni SJ, Thorseth IN (1998) Alteration of oceanic volcanic glass: textural evidence of microbial activity. Science 281:978–980

    Article  ADS  Google Scholar 

  • Fisk MR, Popa R, Mason OU, Storrie-Lombardi MC, Vicenzi EP (2006) Iron-magnesium silicate bioweathering on Earth (and Mars?). Astrobiology 6:48–68

    Article  ADS  Google Scholar 

  • Friedmann EI, Koriem AM (1989) Life on Mars: how it disappeared (if it was ever there). Adv Space Res 9:167–172

    Article  ADS  Google Scholar 

  • Friedmann EI, Ocampo-Friedmann R (1984) Endolithic microorganisms in extreme dry environments: analysis of a lithobiontic microbial habitat. In: Klug MJ, Reddy CA (eds) Current perspectives in microbial ecology. The American Society for Microbiology, Washington, DC, pp 177–185

    Google Scholar 

  • Furnes H, Staudigel H (1999) Biological mediation in ocean crust alteration: how deep is the deep biosphere? Earth Planet Sci Lett 166:97–103

    Google Scholar 

  • Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H, de Wit M (2004) Early life recorded in Archean pillow lavas. Science 304:578–581

    Article  ADS  Google Scholar 

  • Furnes H, Banerjee NR, Staudigel H, Muehlenbachs K, McLoughlin N, de Wit M, Van Kranendonk MJ (2007) Comparing petrographic signatures of bioalteration in recent to Mesoarchean pillow lavas: tracing subsurface life in oceanic igneous rocks. Precambrian Res 158:156–176

    Article  Google Scholar 

  • Glamoclija M, Steele A, Fries M, Schieber J, Voytek MA, Cockell CS (2009) Association of anatase (TiO2) and microbes: unusual fossilization effect or a potential biosignature? Geol Soc Am Spec Pap 458:965–975

    Article  Google Scholar 

  • Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Petrol 51:475–478

    Google Scholar 

  • Golubic S, Radtke G, Le Campion-Alsumard T (2005) Endolithic fungi in marine ecosystems. Trends Microbiol 13:229–235

    Article  Google Scholar 

  • Grotzinger J, Beaty D, Dromart G, Gupta S, Harris M, Hurowitz J, Kocurek G, McLennan S, Milliken R, Ori GG, Sumner D (2011) Mars sedimentary geology: key concepts and outstanding questions. Astrobiology 11:77–87

    Article  ADS  Google Scholar 

  • Heim C (2011) Terrestrial deep biosphere. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht, pp 871–876

    Chapter  Google Scholar 

  • Hofmann BA, Farmer JD, Von Blanckenburg F, Fallick AE (2008) Subsurface filamentous fabrics: an evaluation of possible modes of origins based on morphological and geochemical criteria, with implications for exoplaeontology. Astrobiology 8:87–117

    Article  ADS  Google Scholar 

  • Honnorez J (1978) Generation of phillipsites by palagonitization of basaltic glass in sea water and the origin of K-rich deep-sea sediments. In: Sand LB, Mumpton FA (eds) Natural zeolites, occurrence, properties, use. Pergamon Press, Oxford, pp 45–258

    Google Scholar 

  • Honnorez J (1981) The aging of the oceanic crust at low temperature. In: Emiliani E (ed) The sea, vol 7. Wiley, New York, pp 525–587

    Google Scholar 

  • Ivarsson M, Lindblom S, Broman C, Holm NG (2008a) Fossilized microorganisms associated with zeolite–carbonate interfaces in sub-seafloor hydrothermal environments. Geobiology 6:155–170

    Article  Google Scholar 

  • Ivarsson M, Lausmaa J, Lindblom S, Broman C, Holm NG (2008b) Fossilized microorganisms from the Emperor Seamounts: implications for the search for a subsurface fossil record on Earth and Mars. Astrobiology 8:1139–1157

    Article  ADS  Google Scholar 

  • Jakosky B, Westall F, Brack A (2007) Mars. In: Sullivan W, Baross J (eds) Planets and life. The emerging science of astrobiology. Cambridge University Press, Cambridge, pp 357–387

    Google Scholar 

  • Jones JG (1969) Pillow lavas as depth indicators. Am J Sci 267:181–195

    Article  Google Scholar 

  • Jorge Villar SE, Edwards HGM, Benning LG (2006) Raman spectroscopic and scanning electron microscopic analysis of a novel biological colonisation of volcanic rocks. Icarus 184:158–169

    Article  ADS  Google Scholar 

  • Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934

    Article  Google Scholar 

  • Konhauser KO (1998) Diversity of bacterial iron mineralization. Earth Sci Rev 43:91–121

    Article  ADS  Google Scholar 

  • Konhauser KO, Ferris FG (1996) Diversity of iron and silica precipitation by microbial mats in hydrothermal waters, Iceland: implications for Precambrian iron formations. Geology 24:323–326

    Article  ADS  Google Scholar 

  • Konhauser KO, Urrutia MM (1999) Bacterial clay authigenesis: a common biogeochemical process. Chem Geol 161:399–413

    Article  Google Scholar 

  • Lewis KW, Aharonson O, Grotzinger JP, Squyres SW, Bell JF III, Crumpler LS, Schmidt ME (2008) Structure and stratigraphy of Home Plate from the Spirit Mars Exploration Rover. J Geophys Res (Planets) 113:E12S36

    Article  Google Scholar 

  • Lippmann-Pipke J, Sherwood Lollar B, Niedermann S, Stroncik NA, Naumann R, van Heerden E, Onstott TC (2011) Neon identifies two billion year old fluid component in Kaapvaal Craton. Chem Geol 283:287–296

    Article  Google Scholar 

  • Mason OU, Stingl U, Wilhelm LJ, Moeseneder MM, Di Meo-Savoie CA, Fisk MR, Giovannoni SJ (2007) The phylogeny of endolithic microbes associated with marine basalts. Environ Microbiol 9:2539–2550

    Article  Google Scholar 

  • Mason OU, Di Meo-Savoie CA, Van Nostrand JD, Zhou JZ, Fisk MR, Giovannoni SJ (2009) Prokaryotic diversity, distribution, and insights into their role in biogeochemical cycling in marine basalts. ISME J 3:231–242

    Article  Google Scholar 

  • McLoughlin N, Brasier MD, Wacey D, Green OR, Randall SP (2007) On biogenicity criteria for endolithic microborings on early Earth and beyond. Astrobiology 7:10–26

    Article  ADS  Google Scholar 

  • McLoughlin N, Furnes H, Banerjee NR, Muehlenbachs K, Staudigel H (2009) Ichnotaxonomy of microbial trace fossils in volcanic glass. J Geol Soc Lond 166:159–169

    Article  Google Scholar 

  • Monty CLV, Westall F, Van Der Gaast S (1991) The diagenesis of siliceous particles in subantartcic sediments, ODP Leg 114, Hole 699: possible microbial mediation. In: Ciesielski PF, Kristoffersen Y et al (eds) Proceedings of the ocean drilling program science results, 114. Ocean Drilling Program, College Station, pp 685–710

    Google Scholar 

  • Moore JG (1970) Water content of basalt erupted on the ocean floor. Contrib Mineral Petrol 28:272–279

    Article  ADS  Google Scholar 

  • Nielsen ME, Fisk MR (2010) Surface area measurements of marine basalts: implications for the subseafloor microbial biomass. Geophys Res Lett 37:L15604

    Article  ADS  Google Scholar 

  • Nisbet EG, Sleep NH (2001) The habitat and nature of early life. Nature 409:1083–1091

    Article  ADS  Google Scholar 

  • Nisbet E, Zahnle K, Gerasimov A, Jaumann R, Hoffman B, Helbert H, Benzerara K, Westall F, Gilmour I (2007) Creating habitable zones, at all scales, from planets to muds, on Earth and on Mars. Geology and habitability of terrestrial planets. Space Sci Rev 129:79–121

    Article  ADS  Google Scholar 

  • Onstott TC, Tobin K, Dong H, DeFlaun MF, Fredrickson JK, Bailey T, Brockman F, Kieft T, Peacock A, White DC, Balkwill D (1997) The deep gold mines of South Africa: window into the subsurface biosphere. Proc SPIE 3111:344–357

    Article  ADS  Google Scholar 

  • Parkes RJ, Webster G, Cragg BA, Weightman AJ, Newberry CJ, Ferdelman TG, Kallmeyer JB, Jørgensen B, Aiello IW, Fry JC (2005) Deep sub-seafloor prokaryotes stimulated at interfaces over geological time. Nature 436:390–394

    Article  ADS  Google Scholar 

  • Parsons B (1981) Rates of plate creation and consumption. Geophys J R Astron Soc 67:437–448

    Article  ADS  Google Scholar 

  • Peck DL (1978) Cooling and vesiculation of Alae Lava Lake, Hawaii. U.S. Geological Survey Professional Paper, 935-B. U.S. Geological Survey, Washington, DC

    Google Scholar 

  • Peckmann J, Bach W, Behrens K, Reitner J (2008) Putative cryptoendolithic life in Devonian pillow basalt, Rheinisches Schiefergebirge, Germany. Geobiology 6:125–135

    Article  Google Scholar 

  • Pedersen K (2000) Exploration of deep intraterrestrial life: current perspectives. FEMS Microbiol Lett 185:9–16

    Article  Google Scholar 

  • Pondrelli M, Rossi AP, Marinangeli L, Hauber E, Gwinner K, Baliva A, Di Lorenzo S (2008) Evolution and depositional environments of the Eberswalde fan delta, Mars. Icarus 197:429–451

    Article  ADS  Google Scholar 

  • Preston LJ, Izaza MRM, Banerjee NR (2011) Infrared spectroscopy characterization of organic matter associated with microbial bioalteration textures in basaltic glass. Astrobiology 11:585–599

    Article  ADS  Google Scholar 

  • Rogers JR, Bennett PC (2004) Mineral simulation substance microorganisms: release of limiting nutrients from silicates. Chem Geol 203:91–108

    Article  Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  ADS  Google Scholar 

  • Santelli CM, Orcutt BN, Banning E, Bach W, Moyer CL, Sogin ML, Staudigel H, Edwards KJ (2008) Abundance and diversity of microbial life in ocean crust. Nature 453:653–656

    Article  ADS  Google Scholar 

  • Schmidt ME, Ruff SW, McCoy TJ, Farrand WH, Johnson JR, Gellert R, Ming DW, Morris RV, Cabrol N, Lewis KW, Schroeder C (2008) Hydrothermal origin of halogens at Home Plate, Gusev Crater. J Geophys Res (Planets) 113:E06S12

    Article  Google Scholar 

  • Schumann G, Manz W, Reitner J, Lustrino M (2004) Ancient fungal life in North Pacific Eocene oceanic crust. Geomicrobiol J 21:241–246

    Article  Google Scholar 

  • Shabtai Y, Fleminger G (1994) Adsorption of Rhodococcus strain GIN-1 (NCIMB 40340) on titanium dioxide and coal fly ash particles. Appl Environ Microbiol 60:3079–3088

    Google Scholar 

  • Skok JR, Mustard JF, Ehlmann BL, Milliken RE, Murchie SL (2010) Silica deposits in the Nili Patera caldera on the Syrtis Major volcanic complex on Mars. Nat Geosci 3:838–841

    Article  ADS  Google Scholar 

  • Smith RE (1967) Segregation vesicles in basaltic lava. Am J Sci 265:696–713

    Article  Google Scholar 

  • Southam GL, Rothschild L, Westall F (2007) The geology and habitability of terrestrial planets: fundamental requirements for life. Space Sci Rev 129:7–34

    Article  ADS  Google Scholar 

  • Squyres SW, Arvidson RE, Ruff S, Gellert R, Morris RV, Ming DW, Crumpler L, Farmer JD, Des Marais DJ, Yen A, McLennan SM, Calvin W, Bell JF III, Clark BC, Wang A, McCoy TJ, Schmidt ME, de Souza PA Jr (2008) Detection of silica-rich deposits on Mars. Science 320:1063–1067

    Article  ADS  Google Scholar 

  • Stan-Lotter H, Fendrihan S (2011) Deep biosphere of salt deposits. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht, pp 313–317

    Chapter  Google Scholar 

  • Staudigel H, Furnes H, McLoughlin N, Banerjee NR (2008) 3.5 billion years of glass bioalteration: volcanic rocks as basis for microbial life? Earth Sci Rev 89:156–176

    Article  ADS  Google Scholar 

  • Storrie-Lombardi MC, Fisk MR (2004) Elemental abundance distributions in sub-oceanic basalt glass: evidence of biogenic alteration. Geochem Geophys Geosyst 5. doi:10.1029/2004GC000755

  • Stroncik NA, Schmincke H-U (2001) Evolution of palagonite: crystallization, chemical changes, and elemental budget. Geochem Geophys Geosyst 2. doi:10.1029/2000GC000102

  • Takai K, Moser DP, DeFlaun MF, Onstott TC, Fredrickson JK (2001) Archaeal diversity in waters from deep South African gold mines. Appl Environ Microbiol 67:5750–5760

    Article  Google Scholar 

  • Thorseth IH (2011) Basalt (glass, endoliths). In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht, pp 103–111

    Google Scholar 

  • Thorseth IH, Furnes H, Heldal M (1992) The importance of microbiological activity in the alteration of natural basaltic glass. Geochim Cosmochim Acta 56:845–850

    Article  ADS  Google Scholar 

  • Thorseth IH, Furnes H, Tumyr O (1995) Textural and chemical effects of bacterial activity on basaltic glass: an experimental approach. Chem Geol 119:139–160

    Article  Google Scholar 

  • Thorseth IH, Pedersen RB, Christie DM (2003) Microbial alteration of 0-30-Ma seafloor and sub-seafloor basaltic glasses from the Australian Antarctic discordance. Earth Planet Sci Lett 215:237–247

    Article  ADS  Google Scholar 

  • Torsvik T, Furnes H, Muehlenbachs K, Thorseth IH, Tumyr O (1998) Evidence for microbial activity at the glass-alteration interface in oceanic basalts. Earth Planet Sci Lett 162:165–176

    Article  ADS  Google Scholar 

  • Verrecchia EP (2000) Fungi and sediments. In: Riding R, Awramik SM (eds) Microbial sediments. Springer, New York, pp 68–75

    Google Scholar 

  • Warner NH, Farmer JD (2010) Subglacial hydrothermal alteration minerals in jökulhlaup deposits of southern Iceland, with implications for detecting past or present habitable environments on Mars. Astrobiology 10:523–547

    Article  ADS  Google Scholar 

  • Westall F, Cavalazzi B (2011) Biosignatures in rocks. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht, pp 189–201

    Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583

    Article  ADS  Google Scholar 

  • Wierzchos J, Ascaso C, McKay CP (2006) Endolithic cyanobacteria in halite rocks from the hyperarid core of the Atacama Desert. Astrobiology 6:415–422

    Article  ADS  Google Scholar 

  • Wilson L, Head JW (1994) Mars: review and analysis of volcanic eruption theory and relationships to observed landforms. Rev Geophys 32:221–263

    Article  ADS  Google Scholar 

  • Wynn-Williams DD, Edwards HGM (2000) Antarctic ecosystems as models for extraterrestrial surface habitats. Planet Space Sci 48:1065–1075

    Article  ADS  Google Scholar 

Download references

5. Acknowledgements

We gratefully thank Le Studium, Institute for Advanced Studies, Region Centre, Orléans, France, and the NASA Exobiology Program and NASA Astrobiology Institute. Thanks are due to Nisha Mathew, University of the Witwatersrand, who kindly reviewed the English version of the chapter. BC would like to thanks Paula F. Martínez, Johannesburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barbara Cavalazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cavalazzi, B., Westall, F., Cady, S.L. (2012). Vesicular Basalts as a Niche for Microbial Life. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_4

Download citation

Publish with us

Policies and ethics

Navigation