RNA Interference and Its Potential for Develo** New Control Methods Against Insect Pests

  • Chapter
  • First Online:
Advanced Technologies for Managing Insect Pests
  • 1929 Accesses

Abstract

RNA interference (RNAi) is a novel mechanism for the regulation of gene expression that was first discovered in the model nematode Caenorhabditis elegans. Since its discovery, there has been an explosion in the number of publications that described the mechanisms by which RNAi is activated and regulated in many organisms. Major advancements in this field include the discovery that double-stranded RNA molecules are a major factor that drives the initiation of the process, discovering the role of small interfering RNAs, mechanisms of RNA cleavage by Dicer and the discovery of the first Argonaute proteins in model organisms such as C. elegans, Drosophila melanogaster and mammalian cell lines. Despite these important discoveries in model organisms, non-model organisms still suffer major lack in understanding their RNAi machinery, especially the components of the pathway and the enzymes involved. There is a great potential of RNAi in studying gene function and regulation and complementing functional genomics approaches. RNAi might foster the discovery of new gene functions and unravel new technologies for the suppression of the harmful traits caused by disease agents such as viruses, pathogenic bacteria, fungi and insect pests in animal and plant systems. However, a major challenge remains the technologies by which RNAi signals can be delivered and triggered, while preventing non specific effects.

In this chapter, we will briefly review the developments made in understanding RNAi in model organisms, major advancements in non-model organisms, including the potential for develo** new control methods against insect pests based on RNAi, and recent results from our laboratory, examining a new method for delivering dsRNA, and activating RNAi in the whitefly Bemisia tabaci, a major agricultural pest in many crops worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Araujo RN, Santos A, Pinto FS, Gontijo NF, Lehane MJ, Pereira MH (2006) RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. Insect Biochem Mol Biol 36:683–693

    Article  PubMed  CAS  Google Scholar 

  • Bai H, Palli SR (2010) Functional characterization of bursicon receptor and genome-wide analysis for identification of genes affected by bursicon receptor RNAi. Dev Biol 344:248–258

    Article  PubMed  CAS  Google Scholar 

  • Baum JA, Bogaert T, Clinton W, Heck GR, Feldmann P, Ilagan O, Johnson S, Plaetinck G, Munyikwa T, Pleau M, Vaughn T, Roberts J (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    Article  PubMed  CAS  Google Scholar 

  • Bautista MA, Miyata T, Miura K, Tanaka T (2009) RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth, Plutella xylostella, reduces larval resistance to permethrin. Insect Biochem Mol Biol 39:38–46

    Article  PubMed  CAS  Google Scholar 

  • Beck M, Strand MR (2003) RNA interference silences Microplitis demolitor bracovirus genes and implicates glc1.8 in disruption of adhesion in infected host cells. Virology 314:521–535

    Article  PubMed  CAS  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    Article  PubMed  CAS  Google Scholar 

  • Boisson B, Jacques JC, Choumet V, Martin E, Xu J, Vernick K, Bourgouin C (2006) Gene silencing in mosquito salivary glands by RNAi. FEBS Lett 580:1988–1992

    Article  PubMed  CAS  Google Scholar 

  • Boutros M, Ahringer J (2008) The art and design of genetic screens: RNA interference. Nat Rev Genet 9:554–566

    Article  PubMed  CAS  Google Scholar 

  • Bucher G, Scholten J, Klingler M (2002) Parental RNAi in Tribolium (Coleoptera). Curr Biol 12:R85–R86

    Article  PubMed  CAS  Google Scholar 

  • Byrne DN, Bellows TS Jr (1991) Whitefly biology. Annu Rev Entomol 36:431–457

    Article  Google Scholar 

  • Ciudad L, Belles X, Piulachs MD (2007) Structural and RNAi characterization of the German cockroach lipophorin receptor, and the evolutionary relationships of lipoprotein receptors. BMC Mol Biol 8:53

    Article  PubMed  Google Scholar 

  • Dietzl G, Chen D, Schnorrer F, Su KC, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S, Couto A, Marra V, Keleman K, Dickson BJ (2007) A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. Nature 448:151–156

    Article  PubMed  CAS  Google Scholar 

  • Fabrick JA, Kanost MR, Baker JE (2004) RNAi-induced silencing of embryonic tryptophan oxygenase in the pyralid moth, Plodia interpunctella. J Insect Sci 4:15

    PubMed  Google Scholar 

  • Fire AZ (2007) Gene silencing by double-stranded RNA (Nobel lecture). Angew Chem Int Ed 46:6967–6984

    Article  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  PubMed  CAS  Google Scholar 

  • Friedman A, Perrimon N (2006) A functional RNAi screen for regulators of receptor tyrosine kinase and ERK signaling. Nature 444:230–234

    Article  PubMed  CAS  Google Scholar 

  • Gatehouse JA (2008) Biotechnological prospects for engineering insect-resistant plants. Plant Physiol 146:881–887

    Article  PubMed  CAS  Google Scholar 

  • Ghanim M, Kontsedalov S, Czosnek H (2007) Tissue- specific gene silencing by RNA interference in the whitefly Bemisia tabaci (Gennadius). Insect Biochem Mol Biol 37:732–738

    Article  PubMed  CAS  Google Scholar 

  • Gordon KHJ, Waterhouse PM (2007) RNAi for insect-proof plants. Nat Biotechnol 25:1231–1232

    Article  PubMed  CAS  Google Scholar 

  • Griebler M, Westerlund SA, Hoffmann KH, Meyering-Vos M (2008) RNA interference with the allatoregulating neuropeptide genes from the fall armyworm Spodoptera frugiperda and its effects on the JH titer in the hemolymph. J Insect Physiol 54:997–1007

    Article  PubMed  CAS  Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    Article  PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates posttranscriptional gene silencing in Drosophila cells. Nature 404:293–296

    Article  PubMed  CAS  Google Scholar 

  • He ZB, Cao YQ, Yin YP, Wang ZK, Chen B, Peng GX, **a YX (2006) Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi. Dev Growth Differ 48:439–445

    Article  PubMed  CAS  Google Scholar 

  • Horowitz AR, Antignus Y, Gerling D (2011) Management of Bemisia tabaci whiteflies. In: Thompson WMO (ed) The whitefly, Bemisia tabaci (Homoptera: Aleyrodidae) interaction with Geminivirus-infected host plants. Springer, Dordrecht, pp 293–322

    Chapter  Google Scholar 

  • Hughes CL, Kaufman TC (2000) RNAi analysis of Deformed, proboscipedia and Sex combs reduced in the milkweed bug Oncopeltus fasciatus: novel roles for Hox genes in the hemipteran head. Development 127:3683–3694

    PubMed  CAS  Google Scholar 

  • Jaubert-Possamai S, Trionnaire GL, Bonhomme J, Christ phides GK, Rispe C, Tagu D (2007) Gene knockdown by RNAi in the pea aphid Acyrthosiphon pisum. BMC Biotechnol 7:63

    Article  PubMed  Google Scholar 

  • **ek M, Doudna JA (2009) A three-dimensional view of the molecular machinery of RNA interference. Nature 457:405–412

    Article  PubMed  CAS  Google Scholar 

  • Jose AM, Hunter CP (2007) Transport of sequence-specific RNA interference information between cells. Annu Rev Genet 41:305–330

    Article  PubMed  CAS  Google Scholar 

  • Kennerdell JR, Carthew RW (2000) Heritable gene silencing in Drosophila using double-stranded RNA. Nat Biotechnol 18:896–898

    Article  PubMed  CAS  Google Scholar 

  • Khajuria C, Buschman LL, Chen MS, Muthukrishnan S, Zhu KY (2010) A gut specific chitinase gene essential for regulation of chitin content of peritrophic matrix and growth of Ostrinia nubilalis larvae. Insect Biochem Mol Biol 40:621–629

    Article  PubMed  CAS  Google Scholar 

  • Liu W, Yang F, Jia S, Miao X, Huang Y (2008) Cloning and characterization of Bmrunt from the silkworm Bombyx mori during embryonic development. Arch Insect Biochem Physiol 69:47–59

    Article  PubMed  CAS  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    Article  PubMed  CAS  Google Scholar 

  • Martinez J, Patkaniowska A, Urlaub H, Luhrmann R, Tuschl T (2002) Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110:563–574

    Article  PubMed  CAS  Google Scholar 

  • Masumoto M, Yaginuma T, Niimi T (2009) Functional analysis of Ultrabithorax in the silkworm, Bombyx mori, using RNAi. Dev Genes Evol 219:437–444

    Article  PubMed  CAS  Google Scholar 

  • May RC, Plasterk RH (2005) RNA interference spreading in C. elegans. Methods Enzymol 392:308–315

    Article  PubMed  CAS  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    Article  PubMed  CAS  Google Scholar 

  • Mutti NS, Park Y, Reese JC, Reeck GR (2006) RNAi knockdown of a salivary transcript leading to lethality in the pea aphid, Acyrthosiphon pisum. J Insect Sci 6:38

    Article  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    PubMed  CAS  Google Scholar 

  • Pan MH, Wang XY, Chai CL, Zhang CD, Lu C, **ang ZH (2009) Identification and function of Abdominal-A in the silkworm, Bombyx mori. Insect Mol Biol 18:155–160

    Article  PubMed  CAS  Google Scholar 

  • Parthasarathy R, Sheng Z, Sun Z, Palli SR (2010) Ecdysteroid regulation of ovarian growth and oocyte maturation in the red flour beetle, Tribolium castaneum. Insect Biochem Mol Biol 40:429–439

    Article  PubMed  CAS  Google Scholar 

  • Price DR, Gatehouse JA (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Article  PubMed  CAS  Google Scholar 

  • Pueyo JI, Lanfear R, Couso JP (2008) Ancestral Notch-mediated segmentation revealed in the cockroach Periplaneta americana. Proc Natl Acad Sci USA 105:16614–16619

    Article  PubMed  CAS  Google Scholar 

  • Richards S, Tribolium Genome Sequencing Consortium (2008) The genome of the model beetle and pest Tribolium castaneum. Nature 452:949–955

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Cabrera L, Trujillo-Bacallao D, Borrás-Hidalgo O, Wright DJ, Ayra-Pardo C (2010) RNAi-mediated knockdown of a Spodoptera frugiperda trypsinlike serine-protease gene reduces susceptibility to a Bacillus thuringiensis Cry1Ca1 protoxin. Environ Microbiol 12:2894–2903

    Article  PubMed  CAS  Google Scholar 

  • Saleh MC, van Rij RP, Hekele A, Gillis A, Foley E, O’Farrell PH, Andino R (2006) The endocytic pathway mediates cell entry of dsRNA to induce RNAi silencing. Nat Cell Biol 8:793–802

    Article  PubMed  CAS  Google Scholar 

  • Schmid A, Schindelholz B, Zinn K (2002) Combinatorial RNAi: a method for evaluating the functions of gene families in Drosophila. Trends Neurosci 25:71–74

    Article  PubMed  CAS  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RHA, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    Article  PubMed  CAS  Google Scholar 

  • Sivakumar S, Rajagopal R, Venkatesh GR, Srivastava A, Bhatmagar RK (2007) Knockdown of aminopeptidase-N from Helicoverpa armigera larvae and in transfected Sf21 cells by RNA interference reveals its functional interaction with Bacillus thuringiensis insecticidal protein Cry1Ac. J Biol Chem 282:7312–7319

    Article  PubMed  CAS  Google Scholar 

  • Tan A, Palli SR (2008) Edysone receptor isoforms play distinct roles in controlling molting and metamorphosis in the red flour beetle, Tribolium castaneum. Mol Cell Endocrinol 291:42–49

    Article  PubMed  CAS  Google Scholar 

  • Tian H, Peng H, Yao Q, Chen H, **e Q, Tang B, Zhang W (2009) Developmental control of a lepidopteran pest Spodoptera exigua by ingestion of bacteria expressing dsRNA of a non-midgut gene. PLoS One 4:e6225

    Article  PubMed  Google Scholar 

  • Tomita S, Kikuchi A (2009) Abd-B suppresses lepidopteran proleg development in posterior abdomen. Dev Biol 328:403–409

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575–578

    Article  PubMed  CAS  Google Scholar 

  • Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, Bucher G (2008) Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:R10

    Article  PubMed  Google Scholar 

  • Tsuzuki S, Sekiguchi S, Kamimura M, Kiuchi M, Hayakawa Y (2005) A cytokine secreted from the suboesophageal body is essential for morphogenesis of the insect head. Mech Dev 122:189–197

    Article  PubMed  CAS  Google Scholar 

  • Turner CT, Davy MW, MacDiarmid RM, Plummer KM, Birch NP, Newcomb RD (2006) RNA interference in the light brown apple moth, Epiphyas postvittana (Walker) induced by double-stranded RNA feeding. Insect Mol Biol 15:383–391

    Article  PubMed  CAS  Google Scholar 

  • Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, Kocks C, Rämet M (2006) Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 281:14370–14375

    Article  PubMed  CAS  Google Scholar 

  • Whyard S, Singh AD, Wong S (2009) Ingested double-stranded RNAs can act as species-specific insecticides. Insect Biochem Mol Biol 39:824–832

    Article  PubMed  CAS  Google Scholar 

  • Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456–2459

    Article  PubMed  CAS  Google Scholar 

  • Winston WM, Sutherlin M, Wright AJ, Feinberg EH, Hunter CP (2007) Caenorhabditis elegans SID-2 is required for environmental RNA interference. Proc Natl Acad Sci USA 104:10565–10570

    Article  PubMed  CAS  Google Scholar 

  • Xu W, Han Z (2008) Cloning and phylogenetic analysis of sid-1- like genes from aphids. J Insect Sci 8:30

    Article  Google Scholar 

  • Yang Y, Zhu YC, Ottea J, Husseneder C, Leonard BR, Abel C, Huang F (2010) Molecular characterization and RNA interference of three midgut aminopeptidase N isozymes from Bacillus thuringiensis-susceptible and -resistant strains of sugarcane borer, Diatraea saccharalis. Insect Biochem Mol Biol 40:592–603

    Article  PubMed  CAS  Google Scholar 

  • Yapici N, Kim YJ, Ribeiro C, Dickson BJ (2008) A receptor that mediates the postmating switch in Drosophila reproductive behavior. Nature 451:33–37

    Article  PubMed  Google Scholar 

  • Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATPdependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    Article  PubMed  CAS  Google Scholar 

  • Zha W, Peng X, Chen R, Du B, Zhu L, He G (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6:e20504

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Xu J, Sheng Z, Sui Y, Palli SR (2011) Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J Biol Chem 286:8437–8447

    Article  PubMed  CAS  Google Scholar 

  • Zhu F, Xu J, Palli R, Ferguson J, Palli SR (2011) Ingested RNA interference for managing the populations of the Colorado potato beetle, Leptinotarsa decemlineata. Pest Manag Sci 67:175–182

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Research in Ghanim laboratory was supported by the Binational Agricultural Research and Development Fund BARD grant IS-4062-07, Binational Science Foundation BSF grant 2007045, Israel Science Foundation ISF grant 884/07 and the Chief Scientist of the Israeli Ministry of Agriculture grant 131-1433-09. This is contribution number 500/12 from ARO publications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murad Ghanim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ghanim, M., Kliot, A. (2013). RNA Interference and Its Potential for Develo** New Control Methods Against Insect Pests. In: Ishaaya, I., Palli, S., Horowitz, A. (eds) Advanced Technologies for Managing Insect Pests. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4497-4_9

Download citation

Publish with us

Policies and ethics

Navigation