Cell-Based Screening Systems for Insecticides

  • Chapter
  • First Online:
Advanced Technologies for Managing Insect Pests

Abstract

To date an average of ∼10 billion USD is spent per year for synthetic insecticides to control pest insects of importance in agriculture and human health. At early screening stages for novel insecticides and targets, there is an increasing interest in the development of in vitro methods to replace conventional animal toxicity tests. In this review we discuss the contributions of established insect cell lines, joined with high throughput screening procedures, to rapid screening of many synthetic and natural materials and accelerate the discovery of novel environmentally-safe control agents. Hence, we give significant recent examples and advances (e.g. approach with EcR reporter systems as a paradigm), and we offer a vision of the future of cell-based screening strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bai H, Palli SR (2012) G protein-coupled receptors as target sites for insecticide discovery. In: Ishaaya I, Palli SR, Horowitz AR (eds) Advanced technologies for managing insect pests. Springer (book issue), Dordrecht

    Google Scholar 

  • Bai H, Zhu F, Shah K, Palli SR (2011) Large-scale RNAi screen of G protein-coupled receptors involved in larval growth, molting and metamorphosis in the red flour beetle. BMC Genomics 12:338

    Google Scholar 

  • Baret J-F, Beck Y, Billas-Massobrio I, Moras D, Griffiths AD (2010) Quantitative cell-based reporter gene assays using droplet-based microfluidics. Chem Biol 17:528–536

    PubMed  CAS  Google Scholar 

  • Beatty J, Fauth T, Callender JL, Spindler-Barth M, Henrich VC (2006) Analysis of transcriptional activity mediated by Drosophila melanogaster ecdysone receptor isoforms in a heterologous cell culture system. Insect Mol Biol 15:785–795

    PubMed  Google Scholar 

  • Beatty J, Smagghe G, Ogura T, Nakagawa Y, Spindler-Barth M, Henrich VC (2009) Properties of ecdysteroid receptors from diverse insect species in a heterologous cell culture system – a basis for screening novel insecticidal candidates. FEBS J 276:3087–3098

    PubMed  CAS  Google Scholar 

  • Beckage NE, Marion KM, Walton WE, Wirth MC, Tan FF (2004) Comparative larvicidal toxicities of three ecdysone agonists on the mosquitoes Aedes aegypti, Culex quinquefasciatus, and Anopheles gambiae. Arch Insect Biochem Physiol 57:111–122

    PubMed  CAS  Google Scholar 

  • Beckmann M, Haack K.-J. (2003) Insektizide für die Landwirtschaft: Chemische Schädlings­bekämpfung. Chemie in unserer Zeit 37:88–97

    Google Scholar 

  • Birru W, Fernley RT, Graham LD, Grusovin J, Hill RJ, Hofmann A, Howell L, James PJ, Jarvis KE, Johnson WM, Jones DA, Leitner C, Liepa AJ, Lovrecz GO, Lu L, Nearn RH, O’Driscoll BJ, Phan T, Pollard M, Turner KA, Winkler DA (2010) Synthesis, binding and bioactivity of γ-methylene γ-lactam ecdysone receptor ligands: advantages of QSAR models for flexible receptors. Bioorg Med Chem 18:5647–5660

    PubMed  CAS  Google Scholar 

  • Boudjelida H, Bouaziz A, Soin T, Smagghe G, Soltani N (2005) Effects of ecdysone agonist halofenozide against Culex pipiens. Pestic Biochem Physiol 83:115–123

    CAS  Google Scholar 

  • Cherbas L, Cherbas P (1997) “Parahomologous” gene targeting in Drosophila cells: an efficient homology-dependent pathway of illegitimate recombination near a target site. Genetics 145:349–358

    PubMed  CAS  Google Scholar 

  • Cherbas P, Cherbas L, Lee SS, Nakanishi K (1988) 26-[125I]iodoponasterone A is a potent ecdysone and a sensitive radioligand for ecdysone receptors. Proc Natl Acad Sci USA 85:2096–2100

    Google Scholar 

  • Christopherson KS, Mark MR, Bajaj V, Godowski PJ (1992) Ecdysteroid-dependent regulation of genes in mammalian cells by a Drosophila ecdysone receptor and chimeric transactivators. Proc Natl Acad Sci USA 89:6314–6318

    PubMed  CAS  Google Scholar 

  • Dhadialla TS, Carlson GR, Le DP (1998) New insecticides with ecdysteroidal and juvenile hormone activity. Annu Rev Entomol 43:545–569

    PubMed  CAS  Google Scholar 

  • Dhadialla TS, Retnakaran A, Smagghe G (2005) Insect growth and development disrupting insecticides. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect molecular science, vol 6. Elsevier/Pergamon, New York, pp 55–116

    Google Scholar 

  • Dinan L (1995) A strategy for the identification of ecdysteroid receptor agonists and antagonists from plants. Eur J Entomol 92:271–283

    CAS  Google Scholar 

  • Dinan L, Bourne P, Whiting P, Dhadialla TS, Hutchinson TH (2001) Screening of environmental contaminants for ecdysteroid agonist and antagonist activity using the Drosophila melanogaster B(II) cell in vitro assay. Environ Toxicol Chem 20:2038–2046

    PubMed  CAS  Google Scholar 

  • Elmogy M, Iwami M, Sakurai S (2004) Presence of membrane ecdysone receptor in the anterior silk gland of the silkworm Bombyx mori. Eur J Biochem 271:3171–3179

    PubMed  CAS  Google Scholar 

  • Escriva H, Delaunay F, Laudet V (2000) Ligand binding and nuclear receptor evolution. Bioessays 22:717–727

    PubMed  CAS  Google Scholar 

  • Fahrbach SE, Smagghe G, Velarde RA (2012) Insect nuclear receptors. Annu Rev Entomol 57:83–106

    PubMed  CAS  Google Scholar 

  • Gaw S-Y (1958) Culturing all types of silkworm tissues using the monolayer culture. Chin Sci Bull 7:219–220

    Google Scholar 

  • Goodman CL, El Sayed GN, McIntosh AH, Grasela JJ, Stiles B (2001) Establishment and characterization of insect cell lines from 10 lepidopteran species. In Vitro Cell Dev Biol Anim 37:67–373

    Google Scholar 

  • Grace TDC (1962) Establishment of four strains of cells from insect tissues grown in vitro. Nature (London) 195:788–789

    CAS  Google Scholar 

  • Graham LD, Johnson WM, Pawlak-Skrzecz A, Eaton RE, Bliese M, Howell L, Hannan GN, Hill RJ (2007) Ligand binding by recombinant domains from insect ecdysone receptors. Insect Biochem Mol Biol 37:611–626

    PubMed  CAS  Google Scholar 

  • Gringorten JL (2001) Ion balance in the lepidopteran midgut and insecticidal action of Bacillus thuringiensis. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer, Dordrecht, pp 167–207

    Google Scholar 

  • Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593–608

    PubMed  CAS  Google Scholar 

  • Hamshou M, Smagghe G, Shahidi-Noghabi S, De Geyter E, Lannoo N, Van Damme EJM (2010) Insecticidal properties of Sclerotinia sclerotiorum agglutinin and its interaction with insect tissues and cells. Insect Biochem Mol Biol 40:883–890

    PubMed  CAS  Google Scholar 

  • Hannan GN, Hill RJ, Dedos SG, Swevers L, Iatrou K, Tan A, Parthasarathy R, Bai H, Zhang Z, Palli SR (2009) Applications of RNA interference in ecdysone research. In: Smagghe G (ed) Ecdysone, structures and functions. Springer, Dordrecht, pp 205–227

    Google Scholar 

  • Harada T, Nakagawa Y, Ogura T, Yamada Y, Ohe T, Miyagawa H (2011) Virtual screening for ligands of the insect molting hormone receptor. J Chem Inf Model 51:296–305

    PubMed  CAS  Google Scholar 

  • Harmatha J, Dinan L, Lafont R (2002) Biological activities of a specific ecdysteroid dimmer and of selected monomeric structural analogues in the B(II) assay. Insect Biochem Mol Biol 32:181–185

    PubMed  CAS  Google Scholar 

  • Henrich VC (2005) The ecdysteroid receptor. In: Gilbert LI, Iatrou K, Gill S (eds) Comprehensive insect molecular science, vol 3. Elsevier/Pergamon, New York, pp 243–282

    Google Scholar 

  • Henrich VC, Burns E, Yelverton DP, Christensen E, Weinberger C (2003) Juvenile hormone potentiates ecdysone receptor-dependent transcription in a mammalian cell culture system. Insect Biochem Mol Biol 33:1239–1247

    PubMed  CAS  Google Scholar 

  • Horner MA, Pardee K, Liu S, King-Jones K, Lajoie G, Edwards A, Krause HM, Thummel CS (2009) The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis. Genes Dev 23:2711–2716

    PubMed  CAS  Google Scholar 

  • Iwema T, Billas IML, Beck Y, Bonneton F, Nierengarten H, Chaumot A, Richards G, Laudet V, Moras D (2007) Structural and functional characterization of a novel type of ligand-independent RXR-USP receptor. EMBO J 26:3770–3782

    PubMed  CAS  Google Scholar 

  • Jackson TA, Richer JK, Bain DL, Takimoto GS, Tung L, Horwitz KB (1997) The partial agonist activity of antagonist-occupied steroid receptors is controlled by a novel hinge domain-binding coactivator l7/spa and the corepressors N-CoR or SMRT. Mol Endocrinol 11:693–705

    PubMed  CAS  Google Scholar 

  • Jones G, Sharp PA (1997) Ultraspiracle: an invertebrate nuclear receptor for juvenile hormones. Proc Natl Acad Sci USA 94:13499–13503

    PubMed  CAS  Google Scholar 

  • Jones G, Jones D, Teal P, Sapa A, Wozniak M (2006) The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand. FEBS J 273:4983–4996

    PubMed  CAS  Google Scholar 

  • Joussen N, Heckel DG, Haas M, Schuphan I, Schmidt B (2008) Metabolism of imidacloprid and DDT by P450 GYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag Sci 64:65–73

    PubMed  CAS  Google Scholar 

  • Joussen N, Schuphan I, Schmidt B (2010) Metabolism of methoxychlor by the P450-monooxygenase CYP6G1 involved in insecticide resistance of Drosophila melanogaster after expression in cell cultures of Nicotiana tabacum. Chem Biodivers 7:722–735

    PubMed  CAS  Google Scholar 

  • King-Jones K, Thummel CS (2005) Nuclear receptors – a perspective from Drosophila. Nat Rev Genet 6:311–323

    PubMed  CAS  Google Scholar 

  • Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxin with different insect specificity. Biochim Biophys Acta 924:509–518

    CAS  Google Scholar 

  • Koelle MR, Talbot WS, Segraves WA, Bender MT, Cherbas P, Hogness DS (1991) The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67:59–77

    PubMed  CAS  Google Scholar 

  • Konopova B, **dra M (2008) Broad-Complex acts downstream of Met in juvenile hormone signaling to coordinate primitive holometabolan metamorphosis. Development 135:559–568

    PubMed  CAS  Google Scholar 

  • Kostenis E (2001) Is Gα16 the optimal tool for fishing ligands of orphan G-protein coupled receptors? Trends Pharmacol Sci 22:560–564

    PubMed  CAS  Google Scholar 

  • Kumar MB, Fujimoto T, Potter DW, Deng Q, Palli SR (2002) A single point mutation in ecdysone receptor leads to increased ligand specificity: implications for gene switch applications. Proc Natl Acad Sci USA 99:14710–14715

    PubMed  CAS  Google Scholar 

  • Kumar MB, Potter DW, Hormann RE, Edwards A, Tice CM, Smith HC, Dipietro MA, Polley M, Lawless M, Wolohan PRN, Kethidi DR, Palli SR (2004) Highly flexible ligand binding pocket of ecdysone receptor. A single amino acid change leads to discrimination between two groups of nonsteroidal ecdysone agonists. J Biol Chem 279:27211–27218

    Google Scholar 

  • Li M, Mead EA, Zhu J (2011) Heterodimer of two bHLH-PAS proteins mediates juvenile hormone-induced gene expression. Proc Natl Acad Sci USA 108:638–643

    PubMed  CAS  Google Scholar 

  • Loeb MJ, Martin PAW, Hakim RS, Goto S, Takeda M (2001) Regeneration of cultured midgut cells after exposure to sublethal doses of toxin from two strains of Bacillus thuringiensis. J Insect Physiol 47:599–606

    PubMed  CAS  Google Scholar 

  • Long SH, McIntosh AH, Grasela JJ, Goodman CL (2002) The establishment of a Colorado potato beetle (Coleoptera: Chrysomelidae) pupal cell line. Appl Entomol Zool 37:447–450

    Google Scholar 

  • Lynn DE (2007) Available lepidopteran insect cell lines. In: Murhammer DW (ed) Methods in molecular biology series. Baculovirus and insect cell expression protocols. Springer, New York, pp 117–144

    Google Scholar 

  • Maeda S, Kamita SG, Kondo A (1993) Host range expansion of Autographa californica nuclear polyhedrosis virus (NPV) following recombination of a 0.6 kilobase-pair DNA fragment originating from Bombyx mori NPV. J Virol 67:6234–6238

    PubMed  CAS  Google Scholar 

  • Marvin KA, Reinking JL, Lee AJ, Pardee KM, Krause HM, Burstyn JN (2009) Nuclear receptors Homo sapiens Rev-erbβ and Drosophila melanogaster E75 are thiolate-ligated heme proteins, which undergo redox-mediated ligand switching and bind CO and NO. Biochemistry 48:7056–7071

    PubMed  CAS  Google Scholar 

  • McCearth KJ, Gooday GW (1992) A rapid and sensitive microassay for determination of chitinolytic activity. J Microbiol Methods 14:229–237

    Google Scholar 

  • Michiels K, Van Damme EJM, Smagghe G (2008) Plant-insect interactions: what can we learn from plant lectins? Arch Insect Biochem Physiol 73:193–212

    Google Scholar 

  • Mikitani K (1996) A new nonsteroidal chemical class of ligand for the ecdysteroid receptor 4,5-di-tert-butyl-4-hydroxy-N-isobutyl-benzamide shows apparent insect molting hormone activities at molecular and cellular levels. Biochem Biophys Res Commun 227:427–432

    PubMed  CAS  Google Scholar 

  • Milligan G (2003) High-content assays for ligand regulation of G-protein-coupled receptors. Drug Discov Today 8:579–585

    PubMed  CAS  Google Scholar 

  • Minakuchi C, Nakagawa Y, Kamimura M, Miyagawa H (2003) Binding affinity of nonsteroidal ecdysone agonists against the ecdysone receptor complex determines the strength of their molting hormone activity. Eur J Biochem 270:4095–4104

    PubMed  CAS  Google Scholar 

  • Minakuchi C, Nakagawa Y, Soya Y, Miyagawa H (2004) Preparation of functional ecdysteroid receptor proteins (EcR and USP) using a wheat germ cell-free protein synthesis system. J Pestic Sci 29:189–194

    CAS  Google Scholar 

  • Minakuchi C, Ogura T, Miyagawa H, Nakagawa Y (2007) Effects of the structures of ecdysone receptor (EcR) and ultraspiracle (USP) on the ligand-binding activity of the EcR/USP heterodimer. J Pestic Sci 32:379–384

    CAS  Google Scholar 

  • Minakuchi C, Zhou X, Riddiford LM (2008) Krüppel homolog 1 (Kr-h1) mediates juvenile hormone action during metamorphosis of Drosophila melanogaster. Mech Dev 125:91–105

    PubMed  CAS  Google Scholar 

  • Minakuchi C, Namiki T, Shinoda T (2009) Krüppel homolog 1, an early juvenile hormone-response gene downstream of Methoprene-tolerant, mediates its anti-metamorphic action in the red flour beetle Tribolium castaneum. Dev Biol 325:341–350

    PubMed  CAS  Google Scholar 

  • Miura K, Oda M, Makita S, Chinzei Y (2005) Characterization of the Drosophila Methoprene-tolerant gene product. Juvenile hormone binding and ligand-dependent gene regulation. FEBS J 272:1169–1178

    PubMed  CAS  Google Scholar 

  • Mosallanejad H (2009) Resistance mechanisms for methoxyfenozide: in vitro and in vivo approaches. Ph.D. thesis, Ghent University, Ghent, Belgium

    Google Scholar 

  • Mosallanejad H, Smagghe G (2009) Biochemical mechanisms of methoxyfenozide resistance in the cotton leafworm Spodoptera littoralis. Pest Manag Sci 65:736–737

    Google Scholar 

  • Mosallanejad H, Soin T, Smagghe G (2008) Selection for resistance to methoxyfenozide and 20-hydroxyecdysone in cells of the beet armyworm, Spodoptera exigua. Arch of Insect Biochem and Physiol 67:36–49

    PubMed  CAS  Google Scholar 

  • Mosallanejad H, Badisco L, Swevers L, Soin T, Knapen D, Vanden Broeck J, Smagghe G (2010) Ecdysone signaling and transcript signature in Drosophila cells resistant against methoxyfenozide. J Insect Physiol 56:1973–1985

    PubMed  CAS  Google Scholar 

  • Nakagawa Y (2005) Nonsteroidal ecdysone agonists. Vitam Horm 73:131–173

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Harada T (2012) Advanced screening to identify novel pesticides. In: Ishaaya I, Palli SR, Horowitz AR (eds) Advanced technologies for managing insect pests. Springer (book issue), Dordrecht

    Google Scholar 

  • Nakagawa YY, Henrich VC (2009) Arthropod nuclear receptors and their role in molting. FEBS J 276:6128–6157

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Akagi T, Iwamura H, Fujita T (1989a) Quantitative structure–activity studies of benzoylphenylurea larvicides. VI. Comparison of substituent effects among activities against different insect species. Pestic Biochem Physiol 33:144–157

    CAS  Google Scholar 

  • Nakagawa Y, Matsutani M, Kurihara N, Nishimura K, Fujita T (1989b) Quantitative structure-activity studies of benzoylphenylurea larvicides. VIII. Inhibition of N-acetylglucosamine incorporation into the cultured integument of Chilo suppressalis Walker. Pestic Biochem Physiol 43:141–151

    Google Scholar 

  • Nakagawa Y, Hattori K, Shimizu B-I, Akamatsu M, Miyagawa H, Ueno T (1998) Quantitative structure-activity studies of insect growth regulators XIV. Three-dimensional quantitative structure-activity relationship of ecdysone agonists including dibenzoylhydrazine analogs. Pestic Sci 53:267–277

    CAS  Google Scholar 

  • Nakagawa Y, Hattori K, Minakuchi C, Kugimiya S, Ueno T (2000) Relationships between structure and molting hormonal activity of tebufenozide, methoxyfenozide, and their analogs in cultured integument system of Chilo suppressalis. Steroids 65:117–123

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Minakuchi C, Takahashi K, Ueno T (2002a) Inhibition of [(3)H]ponasterone A binding by ecdysone agonists in the intact Kc cell line. Insect Biochem Mol Biol 32:175–180

    PubMed  CAS  Google Scholar 

  • Nakagawa Y, Minakuchi C, Ueno T (2002b) Inhibition of [3H]ponasterone A binding by ecdysone agonists in the intact Sf-9 cell line. Steroids 65:537–542

    Google Scholar 

  • Nakagawa Y, Takahashi K, Kishikawa H, Ogura T, Minakuchi C, Miyagawa H (2005) Classical and three-dimensional QSAR for the inhibition of [3H]ponasterone A binding by diacylhydrazine-type ecdysone agonists to insect Sf-9 cells. Bioorg Med Chem 13:1333–1340

    PubMed  CAS  Google Scholar 

  • Nauen R, Smagghe G (2006) Mode of action of etoxazole. Pest Manag Sci 62:375–382

    Google Scholar 

  • No P, Yao T-P, Evans RM (1996) Ecdysone-inducible gene expression in mammalian cells and transgenic mice. Proc Natl Acad Sci USA 93:3346–3351

    PubMed  CAS  Google Scholar 

  • Oberlander H, Silhacek DL (1998) New perspectives on the mode of action of benzoylphenylurea insecticides. In: Ishaaya I, Degheele D (eds) Insecticides with novel modes of action. Springer, Berlin, pp 92–105

    Google Scholar 

  • Oberlander H, Smagghe G (2001) Imaginal discs and tissue cultures as targets for insecticide action. In: Ishaaya I (ed) Biochemical sites of insecticide action and resistance. Springer, Berlin, pp 133–150

    Google Scholar 

  • Ogura T, Minakuchi C, Nakagawa Y, Smagghe G, Miyagawa H (2005a) Molecular cloning, expression analysis and functional confirmation of ecdysone receptor and ultraspiracle from the Colorado potato beetle Leptinotarsa decemlineata. FEBS J 272:4114–4128

    PubMed  CAS  Google Scholar 

  • Ogura T, Nakagawa Y, Minakuchi C, Miyagawa H (2005b) QSAR for binding affinity of substituted dibenzoylhydrazines to intact Sf9 cells. J Pestic Sci 30:1–6

    CAS  Google Scholar 

  • Palli SR, Retnakaran A (1999) Molecular and biochemical aspects of chitin synthesis inhibition. In: Jollés P, Muzzarelli RAA (eds) Chitin and chitinases. Birkhäuser Publishing, Basel, pp 85–98

    Google Scholar 

  • Palli SR, Kapitskaya MZ, Kumar MB, Cress DE (2003) Improved ecdysone-receptor based inducible gene regulation system. Eur J Biochem 270:1308–1315

    PubMed  CAS  Google Scholar 

  • Palli SR, Hormann RE, Schlattner U, Lezzi M (2005a) Ecdysteroid receptors and their applications in agriculture and medicine. Vitam Horm 60:59–100

    Google Scholar 

  • Palli SR, Tice CM, Margam VM, Clark AM (2005b) Biochemical mode of action and differential activity of new ecdysone agonists against mosquitoes and moths. Arch Insect Biochem Physiol 58:234–242

    PubMed  CAS  Google Scholar 

  • Potvin L, Laprade R, Schwartz JL (1998) Cry1Ac, a Bacillus thuringiensis toxin, triggers extracellular Ca2+ influx ad Ca2+ release from intracellular stores in Cf1 cells (Choristoneura fumiferana, Lepidoptera). J Exp Biol 201:1851–1858

    PubMed  CAS  Google Scholar 

  • Retnakaran A, Hiruma K, Palli SR, Riddiford LM (1995) Molecular analysis of the mode of action of RH-5992, a lepidopteran specific, non-steroidal ecdysteroid agonist. Insect Biochem Mol Biol 25:109–117

    CAS  Google Scholar 

  • Retnakaran A, Macdonald A, Tomkins WL, Davis CN, Brownwright AJ, Palli SR (1997) Ultrastructural effects of a non-steroidal ecdysone agonist, RH-5992, on the sixth instar larva of the spruce budworm, Choristoneura fumiferana. J Insect Physiol 43:55–68

    PubMed  CAS  Google Scholar 

  • Retnakaran A, Krell P, Feng Q, Arif B (2003) Ecdysone agonists: mechanism and importance in controlling insect pests of agriculture and forestry. Arch Insect Biochem Physiol 54:187–199

    PubMed  CAS  Google Scholar 

  • Riddiford LM (2007) Juvenile hormone action: a 2007 perspective. J Insect Physiol 54:895–901

    Google Scholar 

  • Riddiford LM, Cherbas P, Truman JW (2000) Ecdysone receptors and their biological actions. Vitam Horm 60:1–73

    PubMed  CAS  Google Scholar 

  • Sadrud-Din SY, Loeb MJ, Hakim RS (1996) In vitro differentiation of isolated stem cells from the midgut of Manduca sexta larvae. J Exp Biol 199:319–325

    PubMed  Google Scholar 

  • Sawada Y, Yanai T, Nakagawa H, Tsukamoto Y, Yokoi S, Yanagi M, Sugisaki H, Toya T, Kato Y, Watanabe T, Masui A (2003) Synthesis and insecticidal activity of benzoheterocyclic analogues of N-benzoyl-N-(tert-butyl) benzohydrazide. Part 2: introduction of substituents on the benzene rings of the benzoheterocycle moiety. Pest Manag Sci 59:36–48

    PubMed  CAS  Google Scholar 

  • Shahidi-Noghabi S, Van Damme EJM, De Vos WH, Smagghe G (2011) Internalization of Sambucus nigra agglutinins I and II in insect midgut CF-203 cells. Arch Insect Biochem Physiol 76:211–222

    PubMed  CAS  Google Scholar 

  • Siaussat D, Bozzolan F, Porcheron P, Debernard S (2007) Identification of steroid hormone signalling pathway in insect cell differentiation. Cell Mol Life Sci 64:365–376

    PubMed  CAS  Google Scholar 

  • Siaussat D, Bozzolan F, Porcheron P, Debernard S (2008) The 20-hydroxyecdysone-induced signalling pathway in G2/M arrest of Plodia interpunctella imaginal wing cells. Insect Biochem Mol Biol 38:529–539

    PubMed  CAS  Google Scholar 

  • Smagghe G (2007) Insect cell lines as tools in insecticide mode of action research. In: Ishaaya I, Nauen R, Horowitz AR (eds) Insecticides design using advanced technologies. Springer, Dordrecht, pp 263–304

    Google Scholar 

  • Smagghe G, Degheele D (1995) Biological activity and receptor-binding of ecdysteroids and the ecdysteroid agonists RH-5849 and RH-5992 in imaginal wing discs of Spodoptera exigua (Lepidoptera: Noctuidae). Eur J Entomol 92:333–340

    CAS  Google Scholar 

  • Smagghe G, Eelen H, Verschelde E, Richter K, Degheele D (1996) Differential effects of nonsteroidal ecdysteroid agonists in Coleoptera and Lepidoptera: analysis of evagination and receptor binding in imaginal discs. Insect Biochem Mol Biol 26:687–695

    CAS  Google Scholar 

  • Smagghe G, Dhadialla TS, Derycke S, Tirry L, Degheele D (1998) Action of the ecdysteroid agonist tebufenozide in susceptible and artificially selected beet armyworm. Pestic Sci 54:27–34

    CAS  Google Scholar 

  • Smagghe G, Carton B, Decombel L, Tirry L (2000) Toxicity of four dibenzoylhydrazines correlates with evagination-induction in the cotton leafworm. Pestic Biochem Physiol 68:49–58

    CAS  Google Scholar 

  • Smagghe G, Dhadialla TS, Lezzi M (2002) Comparative toxicity and ecdysone receptor affinity of nonsteroidal ecdysone agonists and 20-hydroxyecdysone in Chironomus tentans. Insect Biochem Mol Biol 32:187–192

    PubMed  CAS  Google Scholar 

  • Smagghe G, Ryckaert J, Soin T, Caputo G, Van Damme EJM (2005a) Effect of plant lectins on growth of insect midgut cells. In Vitro Cell Dev Biol Anim 41:34

    Google Scholar 

  • Smagghe G, Vanhassel W, Moeremans C, De Wilde D, Goto S, Loeb MJ, Blackburn MB, Hakim RS (2005b) Stimulation of midgut stem cell proliferation and differentiation by insect hormones and peptides. Ann N Y Acad Sci 1040:472–475

    PubMed  CAS  Google Scholar 

  • Smagghe G, Goodman CL, Stanley D (2009) Insect cell culture and applications in research and pest control management. In Vitro Cell Dev Biol Anim 45:93–105

    PubMed  Google Scholar 

  • Smith HC, Cavanaugh CK, Friz JL, Thompson CS, Saggers JA, Michelotti EL, Garcia J, Tice CM (2003) Synthesis and SAR of cis-1-benzoyl-1,2,3,4-tetrahydroquinoline ligands for control of gene expression in ecdysone responsive systems. Bioorg Med Chem Lett 13:1943–1946

    PubMed  CAS  Google Scholar 

  • Sohi SS, Palli SR, Cook BJ, Retnakaran A (1995) Forest insect cell lines responsive to 20-hydroxyecdysone and two nonsteroidal ecdysone agonists, RH-5849 and RH-5992. J Insect Physiol 41:457–464

    CAS  Google Scholar 

  • Soin T, Swevers L, Mosallanejad H, Efrose R, Labropoulou V, Iatrou K, Smagghe G (2008) Juvenile hormone analogs do not affect directly the activity of the ecdysteroid receptor complex in insect culture cell lines. J Insect Physiol 54:429–438

    PubMed  CAS  Google Scholar 

  • Soin T, Masatoshi I, Swevers L, Rougé P, Janssen CR, Smagghe G (2009) Towards Coleoptera-specific high-throughput screening systems for compounds with ecdysone activity: development of EcR reporter assays using weevil (Anthonomus grandis)-derived cell lines and in silico analysis of ligand binding to A. grandis ligand-binding pocket. Insect Biochem Mol Biol 39:523–534

    PubMed  CAS  Google Scholar 

  • Soin T, De Geyter E, Mosallanejad H, Iga M, Martín D, Ozaki S, Kitsuda S, Harada T, Miyagawa H, Stefanou D, Kotzia G, Efrose R, Labropoulou V, Geelen D, Iatrou K, Nakagawa Y, Janssen CR, Smagghe G, Swevers L (2010a) Assessment of species specificity of molting accelerating compounds in Lepidoptera: comparison of activity between Bombyx mori and Spodoptera littoralis by in vitro reporter and in vivo toxicity assays. Pest Manag Sci 66:526–535

    PubMed  CAS  Google Scholar 

  • Soin T, Swevers L, Kotzia G, Iatrou K, Janssen CR, Rougé P, Harada T, Nakagawa Y, Smagghe G (2010b) Comparison of the activity of non-steroidal ecdysone agonists between dipteran and lepidopteran insects, using cell-based EcR reporter assays. Pest Manag Sci 66:1215–1229

    PubMed  CAS  Google Scholar 

  • Spindler-Barth M, Spindler K-D (1998) Ecdysteroid resistant subclones of the epithelial cell line from Chironomus tentans. I. Selection and characterization of the resistant clones. In Vitro Cell Dev Biol Anim 34:116–122

    PubMed  CAS  Google Scholar 

  • Spindler-Barth M, Spindler K-D, Londershausen M, Thomas H (1989) Inhibition of chitin synthesis in an insect cell line. Pestic Sci 25:115–121

    CAS  Google Scholar 

  • Srivastava DP, Yu EJ, Kennedy K, Chatwin H, Reale V, Hamon M, Smith T, Evans PD (2005) Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J Neurosci 25:6145–6155

    PubMed  CAS  Google Scholar 

  • Stiles B, McDonald IC, Gerst JW, Adams TS, Newman SM (1992) Initiation and characterization of 5 embryonic-cell lines from the cotton boll weevil Anthonomus grandis in a commercial serum-free medium. In Vitro Cell Dev Biol Anim 28:355–363

    Google Scholar 

  • Suhr ST, Gil EB, Senut M-C, Gage FH (1998) High level transactivation by a modified Bombyx ecdysone receptor in mammalian cells without exogenous retinoid X receptor. Proc Natl Acad Sci USA 95:7999–8004

    PubMed  CAS  Google Scholar 

  • Suzuki J, Tanji I, Ota Y, Toda K, Nakagawa Y (2006) QSAR of 2,4-diphenyl-1,3-oxazolines for ovicidal activity against the two-spotted spider mite Tetranychus urticae. J Pestic Sci 31:409–416

    CAS  Google Scholar 

  • Swevers L, Cherbas L, Cherbas P, Iatrou K (1996) Bombyx EcR (BmEcR) and Bombyx USP (BmCF1) combine to form a functional ecdysone receptor. Insect Biochem Mol Biol 26:217–221

    PubMed  CAS  Google Scholar 

  • Swevers L, Ito K, Iatrou K (2002) The BmE75 nuclear receptors function as dominant repressors of the nuclear receptor BmHR3A. J Biol Chem 277:41637–41644

    PubMed  CAS  Google Scholar 

  • Swevers L, Kravariti L, Ciolfi S, Xenou-Kokoletsi M, Ragoussis N, Smagghe G, Nakagawa Y, Mazomenos B, Iatrou K (2004) A cell-based high-throughput screening system for detecting ecdysteroid agonists and antagonists in plant extracts and libraries of synthetic compounds. FASEB J 18:134–136

    PubMed  CAS  Google Scholar 

  • Swevers L, Soin T, Mosallanejad H, Iatrou K, Smagghe G (2008) Ecdysteroid signaling in ecdysteroid-resistant cell lines from the polyphagous noctuid pest Spodoptera exigua. Insect Biochem Mol Biol 38:825–833

    PubMed  CAS  Google Scholar 

  • Terentiou P, Blanman M, Bradbrook D, Kaser G, Koohnan J (1993) Biological activity and receptor-binding of ecdysteroids in imaginal discs of Calliphora vicina: a comparison. Insect Biochem Mol Biol 23:131–136

    CAS  Google Scholar 

  • Thomas HE, Stunnenberg HG, Stewart AF (1993) Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature 362:471–475

    PubMed  CAS  Google Scholar 

  • Thummel CS (1997) Dueling orphans–interacting nuclear receptors coordinate Drosophila metamorphosis. Bioessays 19:669–672

    PubMed  CAS  Google Scholar 

  • Tice CM, Hormann RE, Thompson CS, Friz JL, Cavanaugh CK, Michelotti EL, Garcia J, Nicolas E, Albericio F (2003a) Synthesis and SAR of alpha-acylaminoketone ligands for control of gene expression. Bioorg Med Chem Lett 13:475–478

    PubMed  CAS  Google Scholar 

  • Tice CM, Hormann RE, Thompson CS, Friz JL, Cavanaugh CK, Saggers JA (2003b) Optimization of α-acylaminoketone ecdysone agonists for control of gene expression. Bioorg Med Chem Lett 13:1883–1886

    PubMed  CAS  Google Scholar 

  • Tsai CC, Kao HY, Yao TP, McKeown M, Evans RM (1999) SMRTER, a Drosophila nuclear receptor coregulator, reveals that EcR-mediated repression is critical for development. Mol Cell 4:175–186

    PubMed  CAS  Google Scholar 

  • Van Damme EJM, Rougé P, Peumans WJ (2007) Carbohydrate-protein interactions: plant lectins. In: Kamerling JP, Boons GJ, Lee YC, Suzuki A, Taniguchi N, Voragen AJG (eds) Comprehensive glycoscience. From chemistry to systems biology, vol 3. Elsevier, New York, pp 563–599

    Google Scholar 

  • Van Hiel MB, Van Loy T, Poels J, Vandersmissen HP, Verlinden H, Badisco L, Vanden Broeck J (2010) Neuropeptide receptors as possible targets for development of insect pest control agents. Adv Exp Med Biol 692:211–226

    PubMed  Google Scholar 

  • Vandenborre G, Lannoo N, Smagghe G, Daniel E, Breite A, Soin T, Jacobsen L, Van Damme EJM (2008) Cell-free expression and functionality analysis of the tobacco lectin. In Vitro Cell Dev Biol Anim 44:228–235

    PubMed  CAS  Google Scholar 

  • Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defence proteins against phytophagous insects. Phytochemistry 72:1538–15550

    PubMed  CAS  Google Scholar 

  • Verhaegen Y, Parmentier K, Swevers L, Rougé P, Soin T, De Coen W, Cooreman K, Smagghe G (2010) The brown shrimp (Crangon crangon L.) ecdysteroid receptor complex: cloning, structural modeling of the ligand-binding domain and functional expression in an EcR-deficient Drosophila cell line. Gen Comp Endocrinol 168:415–423

    PubMed  CAS  Google Scholar 

  • Wagner BL, Norris JD, Knotts TA, Weigel NL, McDonnell DP (1998) The nuclear corepressors NCoR and SMRT are key regulators of both ligand- and 8-bromo-cyclic amp-dependent transcriptional activity of the human progesterone receptor. Mol Cell Biol 18:1369–1378

    PubMed  CAS  Google Scholar 

  • Wang P, McCarthy WJ (1997) Cytolytic activity of Bacillus thuringiensis Cry1C and Cry1AC toxins to Spodoptera sp. midgut epithelial cells in vitro. In Vitro Cell Dev Biol Anim 33:315–323

    PubMed  CAS  Google Scholar 

  • Wheelock CE, Nakagawa Y, Harada T, Oikawa N, Akamatsu M, Smagghe G, Stefanou D, Iatrou K, Swevers L (2006) High-throughput screening of ecdysone agonists using a reporter gene assay followed by 3-D QSAR analysis of the molting hormonal activity. Bioorg Med Chem 14:1143–1159

    PubMed  CAS  Google Scholar 

  • Williams CM (1969) Third generation pesticides. Sci Am 217:13–17

    Google Scholar 

  • Williams C (2004) cAMP detection methods in HTS: selecting the best from the rest. Nat Rev Drug Discov 3:125–135

    PubMed  CAS  Google Scholar 

  • Wing KD (1988) RH 5849, a nonsteroidal ecdysone agonist: effects on a Drosophila cell line. Science 241:467–469

    Google Scholar 

  • **ao SH, Reagan JD, Lee PH, Fu A, Schwandner R, Zhao X, Knop J, Beckmann H, Young SW (2008) High throughput screening for orphan and liganded GPCRs. Comb Chem High Throughput Screen 11:195–205

    PubMed  CAS  Google Scholar 

  • Yao T-P, Forman BM, Jiang Z, Cherbas L, Chen J-D, McKeown M, Cherbas P, Evans RM (1993) Functional ecdysone receptor is the product of EcR and Ultraspiracle genes. Nature 366:476–479

    PubMed  CAS  Google Scholar 

  • Zhang XB, Candas M, Griko NB, Taussig R, Bulla LA (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. Proc Natl Acad Sci USA 103:9897–9902

    PubMed  CAS  Google Scholar 

  • Zhang ZL, Xu JJ, Sheng ZT, Sui Y, Palli SR (2011) Steroid receptor co-activator is required for juvenile hormone signal transduction through a bHLH-PAS transcription factor, methoprene tolerant. J Biol Chem 286:8437–8447

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support for their research by the Fund for Scientific Research-Flanders (FWO-Vlaanderen), the Flemish agency for Innovation by Science and Technology (IWT-Vlaanderen) and the Special Research Funds of Ghent University in Belgium, and the General Secretariat for Research and Technology, Hellenic Republic Ministry of National Education and Religious Affairs in Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Smagghe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smagghe, G., Swevers, L. (2013). Cell-Based Screening Systems for Insecticides. In: Ishaaya, I., Palli, S., Horowitz, A. (eds) Advanced Technologies for Managing Insect Pests. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4497-4_6

Download citation

Publish with us

Policies and ethics

Navigation