Genetic Algorithms and their Application to the Identification of Hydraulic Properties of Rocks

  • Conference paper
Emerging Technologies and Techniques in Porous Media

Part of the book series: NATO Science Series ((NAII,volume 134))

  • 544 Accesses

Abstract

Many of the problems encountered in engineering may be reformulated as optimisation problems but often the corresponding objective function may be highly nonlinear or non-monotonie, may have a very complex form or its analytical expression may be unknown. Traditional, gradient based, optimisation algorithms are likely to fail for objective functions that exhibit multiple local optima and for such a gradient based algorithms in practice it is often difficult to provide an initial guess which is within the radius of convergence towards the global optimum. Also, in order to achieve convergence various restrictions are imposed and the applicability of such gradient algorithms is limited since these requirements are rarely met in practice. Moreover, gradient computations may constitute a problem in itself if noise is present in the measurements. Therefore, for complex practical problems, often it is required to use a more robust and adaptive approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al-Dhahir, Z. A. and Tan, D. C. (1968). A note on one-dimensional constanthead permeability tests. Géotechnique, 18, 499–505.

    Article  Google Scholar 

  2. Atkinson, C, Hammond, P. S., Sheppard, M. and Sobey, I. J. (1986). Some mathematical problems from the oil service industry. In Proceedings of the London mathematical society symposium (ed. R. J. Knops and A. A. Lacey). Cambridge University Press.

    Google Scholar 

  3. Back, T. (1995). Evolutionary algorithms in theory and practice. Oxford University Press, New York.

    Google Scholar 

  4. Beck, J. V. and Arnold, K. J. (1977). Parameter estimation in engineering and science. Wiley, New York.

    Google Scholar 

  5. Beck, J. V., Cole, K. D., Haji-Sheikh, A. and Litkouhi, B. (1992). Heat conduction using Green’s functions. Wiley, New York.

    Google Scholar 

  6. Brace, W. F., Walsh, J. B. and Frangos, W. T. (1968). Permeability of granite under high pressure. J. Geophys. Res., 73, 2225–36.

    Article  Google Scholar 

  7. Butler, Jr, J. J. (1988). Pum** tests in nonuniform aquifers—the radially symmetric case. J. Hydrol., 101, 15–30.

    Article  Google Scholar 

  8. Butler, Jr, J. J. and Liu, W. Z. (1991). Pum** tests in nonuniform aquifers— the linear strip case. J. Hydrol., 128, 69–99.

    Article  Google Scholar 

  9. Butler, Jr, J. J. and Liu, W. Z. (1993). Pum** tests in nonuniform aquifers— the radially asymmetric case. Water Resources Res., 29, 259–69.

    Article  Google Scholar 

  10. Butler, Jr, J. J. and McElwee, C. D. (1990). Variable-rate pum** tests for radially symmetric nonuniform aquifers. Water Resources Res., 26, 291 306.

    Google Scholar 

  11. Cannon, J. R. (1964). Determination of certain parameters in heat conduction problems. J. Math. Anal. Appl., 8, 188–201.

    Article  MathSciNet  MATH  Google Scholar 

  12. Carrera, J. and Neuman, S. P. (1986). Estimation of aquifer under transient and steady state conditions. 2. Uniqueness, stability and solution algorithms. Water Resources Res., 22, 211–27.

    Article  Google Scholar 

  13. Clennell, M. B. (1997). Fluid flow transients in the petrophysical characterisation of reservoir rocks. Internal report for Rock Deformation Research. School of Earth Sciences, University of Leeds, UK.

    Google Scholar 

  14. Clennell, M. B. (1998). Transient flow in reservoir rocks and seals: laboratory experiments and forward numerical models. Programme with abstracts—2nd IMA congress on modelling permeable rocks. Institute of Mathematics and Its Applications, Cambridge.

    Google Scholar 

  15. Davis, L. (ed.) (1987). Genetic algorithms and simulated annealing. Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  16. Donath, F. A., Holder, J. T. and Fruth, L. S. (1988). Simultaneous hydraulic/physical parameter measurement on rock specimens subjected to triaxial conditions. In Advanced triaxial testing of soil and rock (ed. R. T. Donahe, R. C. Chaney and M. L. Silver), pp. 143-54. ASTM STP 977, Philadelphia.

    Google Scholar 

  17. Esaki, T., Zhang, M., Takeshita, A. and Mitani, Y. (1996). Rigorous theoretical analysis of a flow pump permeability test. Geotechnical Testing J., 19, 241–6.

    Article  Google Scholar 

  18. Fischer, G. J. and Paterson, M. S. (1992). Measurement of permeability and storage capacity of rocks during high deformation at high temperature and pressure. In Fault mechanics and transport properties of rocks (ed. T. Evans and T. Wong), pp. 213-52. Blackwell, New York.

    Google Scholar 

  19. Goldberg, D. E. (1989). Genetic algorithms in search, optimisation and machine learning. Addison-Wesley, Reading, MA.

    Google Scholar 

  20. Herrera, F., Lozano, M. and Verdegay, J. L. (1998). Tackling real coded genetic algorithms: operator and tools for behavioural analysis. Artificial Intell. Rev., 12, 265–319.

    Article  MATH  Google Scholar 

  21. Home, R. N. (1995). Modern well test analysis. Petroway, Palo Alto.

    Google Scholar 

  22. Hsieh, P. A., Tracy, J. V., Neuzil, C. E., Bredehoeft, J. D. and Silliman, S. E. (1981). A transient laboratory method for determining the hydraulic properties of tight rocks. 1. Theory. Int. J. Rock Mech. Mining Sci. Geomech. Abstr., 18, 245–52.

    Article  Google Scholar 

  23. Kamath, J., Boyer, R. E. and Nakagawa, F. M. (1990). Characterisation of core scale heterogeneities using laboratory pressure transients. SPE 20575.

    Google Scholar 

  24. Kranz, R. L., Saltzman, J. S. and Blacic, J. D. (1990). Hydraulic diffusivity measurements on laboratory rock samples using an oscillating pore pressure method. Int. J. Rock Mech. Mining Sci. Geomech. Abstr., 27, 345–52.

    Google Scholar 

  25. Lesnic, D., Elliott, L., Ingham, D. B., Clennell, M. B. and Knipe, R. J. (1997). A mathematical model and numerical investigation for determining the hydraulic conductivity of rocks. Int. J. Rock Mech. Mining Sci., 34, 741–59.

    Article  Google Scholar 

  26. Lesnic, D., Elliott, L., Ingham, D. B., Clennell, M. B. and Knipe, R. J. (1999). The identification of the piecewise homogeneous thermal conductivity of conductors subjected to a heat flow test. Int. J. Heat Mass Transfer, 42, 143–52.

    Article  MATH  Google Scholar 

  27. Lesnic, D., Elliott, L., Ingham, D. B., Knipe, R. J. and Clennell, M. B. (1998). An inverse problem to determine the piecewise homogeneous hydraulic conductivity within rocks. In Faulting, fault sealing and fluid flow in hydrocarbon reservoirs (ed. G. Jones, Q. J. Fisher and R. J. Knipe), pp. 261-8. Special publications 147. Geological Society, London.

    Google Scholar 

  28. Lesnic, D., Mustata, R., Clennell, M. B., Elliott, L., Harris, S. D. and Ingham, D. B. (2003). Genetic algorithm to identify the hydraulic properties of heterogeneous rocks from laboratory flow-pump experiments. Hybrid Meth. Eng. In press.

    Google Scholar 

  29. Lin, W. (1977). Compressible fluid flow through rocks of variable permeability. Lawrence Livermore Laboratory, CA. Report UCRL-52304.

    Google Scholar 

  30. McElwee, C. D. (1982). Sensitivity analysis and the groundwater inverse problem. Ground Water, 20, 723–35.

    Article  Google Scholar 

  31. McElwee, C. D. (1987). Sensitivity analysis of groundwater models. In Advances in transport phenomena in porous media (ed. J. Bear and M. Y. Corapcioglu), pp. 751-817. NATO Advanced Study Institute Series E 128, London.

    Google Scholar 

  32. McElwee, C. D. and Yukler, M. A. (1978). Sensitivity of groundwater models with respect to variations in transmissivity and storage. Water Resources Res., 14, 451–9.

    Article  Google Scholar 

  33. Michalewicz, Z. (1996). Genetic algorithms + data structures — evolution programs (3rd edn). Springer-Verlag, Berlin.

    Google Scholar 

  34. Morin, R. H. and Olsen, H. W. (1987). Theoretical analysis of the transient pressure response from a constant flow rate hydraulic conductivity test. Water Resources Res., 23, 1461–70.

    Article  Google Scholar 

  35. Mustata, R. (2000). Parameter identification within a porous medium using genetic algorithms. PhD thesis. Department of Applied Mathematics, University of Leeds, UK.

    Google Scholar 

  36. Neuzil, C. E., Cooley, C, Silliman, S. E., Bredehoeft, J. D. and Hsieh, P. A. (1981). A transient laboratory method for determining the hydraulic properties of tight rocks. II. Application. Int. J. Rock Mech. Mining Sci. Geomech. Abstr., 18, 253–8.

    Article  Google Scholar 

  37. Olsen, H. W., Gill, J. D., Wilden, J. D. and Nelson, K. R. (1991). Innovations in hydraulic conductivity measurements. Proceedings of the transportation research board, 70th annual meeting, Washington, DC. Paper no. 910367.

    Google Scholar 

  38. Reeves, C. R. and Rowe, J. E. (2003). Genetic algorithms—principles and perspectives: a guide to G A theory. Kluwer, Boston.

    Google Scholar 

  39. Rigord, P., Caristan, Y. and Hulin, J. P. (1993). Analysis of porous media heterogeneities using the diffusion of pressure waves. J. Geophys. Res., 98, 9781–91.

    Article  Google Scholar 

  40. Wang, H. F. (2000). Linear poroelasticity. Princeton University Press.

    Google Scholar 

  41. Zhang, M., Takahashi, M., Morin, R. H. and Esaki, T. (2000). Evaluation and application of the transient-pulse technique for determining the hydraulic properties of low-permeability rocks. Part 1. Theoretical evaluation. Geotechnical Testing J., 23, 83–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mera, N.S., Ingham, D.B., Elliott, L. (2004). Genetic Algorithms and their Application to the Identification of Hydraulic Properties of Rocks. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media. NATO Science Series, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0971-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0971-3_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1874-9

  • Online ISBN: 978-94-007-0971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation