Governing Equations for Laminar Flows Through Porous Media

A new look at viscous dissipation

  • Conference paper
Emerging Technologies and Techniques in Porous Media

Part of the book series: NATO Science Series ((NAII,volume 134))

Abstract

We mean by a porous medium a material consisting of a solid matrix with an interconnected void and the solid matrix can be either rigid (the usual configuration) or it undergoes small deformation. The interconnectedness of the void (pores) allows the flow of one, or more, fluids through the material. In the simplest situation, i.e. ‘single-phase flow’, the void is saturated by a single fluid, whereas in ‘two-phase flow’ two fluids share the void space. Examples of natural porous media are sandstone, wood, limestone, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 319.93
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 400.89
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 400.89
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Al Hadhrami, A. K., Elliott, L. and Ingham, D. B. (2002). Combined free and forced convection in vertical channels of porous media. Transport in Porous Media, 49, 265–89.

    Article  MathSciNet  Google Scholar 

  2. Al Hadhrami, A. K., Elliott, L. and Ingham, D. B. (2003). A new model for viscous dissipation in porous media across a range of permeability values. Transport in Porous Media. In press.

    Google Scholar 

  3. Bories, S. A. (1987). Natural convection in porous media. In Advances in transport phenomena in porous media (ed. J. Bear and M. Y. Corapcioglu), pp. 77-141. Martinus Nijhoff, The Netherlands.

    Google Scholar 

  4. Brinkman, H. C. (1947). A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res. A, 1, 27–34.

    Article  Google Scholar 

  5. Brinkman, H. C. (1947). On the permeability of media consisting of closely packed porous particles. Appl. Sci. Res. A, 1, 81–6.

    Article  Google Scholar 

  6. Chandrasekhara, B. C. and Nagaraju, P. (1988). Composite heat transfer in the case of steady laminar flow of a gray fluid with small optical density past a horizontal plate embedded in a saturated porous medium. Wärme-und Stoffübertr., 23, 343–52.

    Article  Google Scholar 

  7. Chandrasekhara, B. C. and Nagaraju, P. (1993). Composite heat transfer in a variable porosity medium bounded by an infinite flat plate. Wärme-und Stoffübertr., 28, 449–56.

    Article  Google Scholar 

  8. Darcy, H. P. C. (1856). Les fontaines publiques de la ville de Dijon. Victor Delmont, Paris.

    Google Scholar 

  9. Hossain, M. and Pop, I. (1997). Radiation effect on Darcy free convective flow along an inclined surface placed in a porous media. Heat Mass Transfer, 30, 149–53.

    Article  Google Scholar 

  10. Howie, L. E. (2002). Convection in ordered and disordered porous layers. In Transport phenomena in porous media II (ed. D. B. Ingham and I. Pop), pp. 155-76. Pergamon, Oxford.

    Google Scholar 

  11. Ingham, D. B. and Pop, I. (ed.) (1998). Transport phenomena in porous media. Pergamon, Oxford.

    Google Scholar 

  12. Ingham, D. B. and Pop, I. (ed.) (2002). Transport phenomena in porous media II. Pergamon, Oxford.

    Google Scholar 

  13. Joseph, D. D., Nield, D. A. and Papanicolaou, G. (1982). Nonlinear equation governing flow in a saturated porous medium. Water Resources Res., 18, 1049–52 and 19, 591.

    Article  Google Scholar 

  14. Kaviany, M. (1995). Principles of heat transfer in porous media (2nd edn). Springer-Verlag, New York.

    Google Scholar 

  15. Kladias, N. and Prasad, V. (1989). Convective instabilities in horizontal porous layers heated from below: effects of grain size and properties. ASME HTD, 107, 369–79.

    Google Scholar 

  16. Kladias, N. and Prasad, V. (1989). Natural convection in horizontal porous layers: effects of Darcy and Prandtl numbers. ASME J. Heat Transfer, 111, 926–35.

    Article  Google Scholar 

  17. Kladias, N. and Prasad, V. (1990). Flow transitions in buoyancy-induced non-Darcy convection in a porous medium heated from below. ASME J. Heat Transfer, 112, 675–84.

    Article  Google Scholar 

  18. Lage, J. L. (1998). The fundamental theory of flow through permeable media from Darcy to turbulence. In Transport phenomena in porous media (ed. D. B. Ingham and I. Pop), pp. 1-30. Pergamon, Oxford.

    Google Scholar 

  19. Mansour, M. A. (1997). Forced convection radiation interaction heat transfer in boundary layer over a flat plate submersed in a porous medium. Appl. Mech. Eng., 2, 405–13.

    MATH  Google Scholar 

  20. Masuoka, T. and Takatsu, Y. (2002). Turbulence characteristics in porous media. In Transport phenomena in porous m,edia II(ed. D. B. Ingham and I. Pop), pp. 231-56. Pergamon, Oxford.

    Google Scholar 

  21. Nield, D. A. (1991). Estimation of the stagnant thermal conductivity of saturated porous media. Int. J. Heat Mass Transfer, 34, 1575–6.

    Article  Google Scholar 

  22. Nield, D. A. (1999). Modelling the effects of a magnetic field or rotation on flow in a porous medium. Momentum equation and anisotropic permeability analogy. Int. J. Heat Mass Transfer, 42, 3715–18.

    Article  MATH  Google Scholar 

  23. Nield, D. A. (2000). Resolution of a paradox involving viscous dissipation and nonlinear drag in porous medium. Transport in Porous Media, 41, 349–57.

    Article  MathSciNet  Google Scholar 

  24. Nield, D. A. (2002). Modelling fluid flow in saturated porous media and at interfaces. In Transport phenomena in porous media II (ed. D. B. Ingham and I. Pop), pp. 1-19. Pergamon, Oxford.

    Google Scholar 

  25. Nield, D. A. and Bejan, A. (1999). Convection in porous media (2nd edn). Springer, New York.

    Google Scholar 

  26. Pop, I. and Ingham, D. B. (2001). Convective heat transfer: mathematical and computational modelling of viscous fluids and porous media. Pergamon, Oxford.

    Google Scholar 

  27. Raptis, A. and Perdikis, C. (1987). Hydromagnetic free-convective flow through porous media. In Encyclopedia of fluid mechanics and modelling (ed. N. P. Cheremisinoff), pp. 239-62, Chapter 8. Gulf Publishing, Houston.

    Google Scholar 

  28. Shenoy, A. V. (1992). Darcy natural, forced and mixed convection heat transfer from an isothermal vertical flat plate embedded in a porous medium saturated with an elastic fluid of constant viscosity. Int. J. Eng. Sci., 30, 455 67.

    Google Scholar 

  29. Shenoy, A. V. (1993). Darcy-Forchheimer natural, forced and mixed convection heat transfer in non-Newtonian power-law fluid-saturated porous media. Transport in Porous Media, 11, 219–41.

    Article  Google Scholar 

  30. Shenoy, A. V. (1994). Non-Newtonian fluid heat transfer in porous media. Adv. Heat Transfer, 24, 101–90.

    Article  Google Scholar 

  31. Vadasz, P. (1998). Free convection in rotating porous media. In Transport phenomena in porous media (ed. D. B. Ingham and I. Pop), pp. 285-312. Pergamon, Oxford.

    Google Scholar 

  32. Vadasz, P. (1999). Flow in rotating porous media. In Fluid transport in porous media (ed. P. du Plessis), Chapter 4. Computational Mechanics Publications, Southampton.

    Google Scholar 

  33. Wang, M. and Bejan, A. (1987). Heat transfer correlation for Bénard convection in a saturated porous layer. Int. Comm. Heat Mass Transfer, 14, 617–26.

    Article  Google Scholar 

  34. Ward, J. C. (1964). Turbulent flow in porous media. J. Hydraul. Div. Amer. Soc. Civ. Eng., 90, 1–12.

    Google Scholar 

  35. Yih, K. A. (1999). Radiation effect on natural convection over a vertical cylinder embedded in porous media. Int. Comm. Heat Mass Transfer, 26, 259–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ingham, D.B. (2004). Governing Equations for Laminar Flows Through Porous Media. In: Ingham, D.B., Bejan, A., Mamut, E., Pop, I. (eds) Emerging Technologies and Techniques in Porous Media. NATO Science Series, vol 134. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0971-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0971-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1874-9

  • Online ISBN: 978-94-007-0971-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation