Electron Density Estimation in the Magnetotail: a Multi-Instrument Approach

  • Conference paper
  • First Online:
The Cluster Active Archive

Abstract

Electron density is a key physical quantity to characterize any plasma medium. Its measurement is thus essential to understand the physical processes occurring in the environment of a magnetized planet, both macroscopic and microscopic. Since 2000, the four satellites of the European Space Agency (ESA) Cluster mission have been orbiting the Earth from 4 RE to 20 RE and probing the density with several types of instruments. In the magnetotail, this rare combination of experiments is particularly useful since the electron density and the temperature fluctuate over several decades. Two of these experiments, a relaxation sounder and a high-time resolution wide-band receiver, have rarely been flown together in the far tail. Such wave data can be used as a means to estimate the electron density via the identification of triggered resonances or the cutoffs of natural wave emissions, typically with an accuracy of a few percent. For the first time in the magnetotail ( ∼20 RE), the Z-mode is proposed as the theoretical interpretation of the cutoff observed on spectrograms of wave measurements when the plasma frequency is greater than the electron gyrofrequency. We present examples found in the main regions of the magnetotail, comparing simultaneous density estimation from active and passive wave measurements with a particle instrument and calibrated spacecraft-to-probe potential difference data. With these examples, we illustrate the benefit of a multi-instrument approach for the estimation of the electron density in the magnetotail and the care that should be taken when determining the electron density from wave data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Balogh, A., et al. (2001), The Cluster Magnetic Field Investigation: overview of in-flight performance and initial results, Ann. Geophys., 19, 1207–1217.

    Article  ADS  Google Scholar 

  2. Benson, R.F., P.A. Webb, J.L. Green, D.L. Carpenter, V.S. Sonwalkar, H.G. James, and B.W. Reinish (2006), Active wave experiments in space plasmas: the Z mode, Lect. Notes Phys., 687, 3–35.

    Article  ADS  Google Scholar 

  3. Calvert, W. (1981), The auroral plasma cavity, Geophys. Res. Lett., 8, 919–921.

    Article  ADS  Google Scholar 

  4. Cully, C. M., R. E. Ergun, and A. I. Eriksson (2007), Electrostatic structure around spacecraft in tenuous plasmas, J. Geophys. Res., 112, A09211, doi:10.1029/2007JA012269.

    Article  Google Scholar 

  5. Décréau, P. M. E., Fergeau, P., Krasnosels’kikh, V., Le Guirriec, E., Lévêque, M., Martin, Ph., Randriamboarison, O., Rauch, J. L., Sené, F. X., Séran, H. C., Trotignon, J. G., Canu, P., Cornilleau, N., de Féraudy, H., Alleyne, H., Yearby, K., Mögensen, P. B., Gustafsson, G., André, M., Gurnett, D. A., Darrouzet, F., Lemaire, J., Harvey, C. C., Travnicek, P., and Whisper experimenters (2001), Early results from the Whisper instrument on CLUSTER: an overview, Ann. Geophys., 19, 1241–1258.

    Article  ADS  Google Scholar 

  6. Donley, J. L., L.H. Brace, J.A. Findlay, J.H. Hoffman, and G.L. Wrenn (1969), Comparison of results of Explorer 31 direct measurement probes, Proc. IEEE, 5710, 1078–1084.

    Article  Google Scholar 

  7. Escoubet, C. P., A. Pedersen, R. Schmidt, and P.-A. Lindqvist (1997), Density in the magnetosphere inferred from the ISEE-1 spacecraft potential, J. Geophys. Res., 102, 17,595– 17,609, doi:10.1029/97JA00290.

    Article  ADS  Google Scholar 

  8. Escoubet, C. P., M. Ferhinger and M. Goldstein (2001), The Cluster mission, Ann. Geophys., 19, 1197–1200.

    Article  ADS  Google Scholar 

  9. Etcheto, J. and Bloch, J. J., Plasma density measurements from the GEOS-1 relaxation sounder, Space Sci. Rev., 22, 597–610, 1978.

    Article  ADS  Google Scholar 

  10. Etcheto, J., and A. Saint-Marc (1985), Anomalously High Plasma Densities in the Plasmasheet Boundary Layer, J. Geophys. Res., 90, 5338–5344.

    Article  ADS  Google Scholar 

  11. Fazakerley, A., S. Schwartz, and G. Paschmann (1998), Measurement of Plasma Velocity Distributions in Analysis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P. W. Daly, ISSI Scientific Report SR-001, ISSI/ESA.

    Google Scholar 

  12. Gurnett, D., and J. Green (1978), On the polarization and origin of auroral kilometric radiation, J. Geophys. Res., 83, 689–696.

    Article  ADS  Google Scholar 

  13. Gurnett, D., S. Shawhan, and R. Shaw (1983), Auroral hiss, Z mode radiation, and auroral kilometric radiation in the polar magnetosphere: DE 1 observations, J. Geophys. Res., 88, 329–340.

    Article  ADS  Google Scholar 

  14. Gurnett, D. A., R. L. Huff, J. S. Pickett, A. M. Persoon, R. L. Mutel, I.W. Christopher, C. A. Kletzing, U. S. Inan, W. L. Martin, J.-L. Bougeret, H. St. C. Alleyne, and K. H. Yearby, First results from the Cluster wideband plasma wave investigation (2001), Ann. Geophys., 19, 1259–1272.

    Article  ADS  Google Scholar 

  15. Gustafsson, G., M. André, T. Carozzi, A. I. Eriksson, C.-G. Fälthammar, R. Grard, G. Holmgren, J. A. Holtet, N. Ivchenko, T. Karlsson, Y. Khotyaintsev, S. Klimov, H. Laakso, P.-A. Lindqvist, B. Lybekk, G. Marklund, F. Mozer, K. Mursula, A. Pedersen, B. Popielawska, S. Saving, K. Stasiewicz, P. Tanskanen, A. Vaivads, and J.-E. Wahlund (2001), First results of electric field and density observations by Cluster EFW based on initial months of operation, Ann. Geophys., 19, 1219–1240.

    Article  ADS  Google Scholar 

  16. Harvey, C. C., J. Etcheto, Y. de Javel, R. Manning, and M. Petit, The ISEE electron density experiment, IEEE Trans. Geosci. Electron., GE-16, 231–238, 1978.

    Article  ADS  Google Scholar 

  17. Harvey, C. C., J. Etcheto and A. Mangeney (1979), Early results from the ISEE electron density experiment, Space Sci. Rev., 23, 39–58.

    ADS  Google Scholar 

  18. Johnstone, A. D., et al. (1997), PEACE, a plasma electron and current experiment, Space Sci. Rev., 79, 351–398, doi:10.1023/A:1004938001388.

    Article  ADS  Google Scholar 

  19. Laakso, H., and A. Pedersen (1998), Ambient electron density derived from differential potential measurements, in Measurement Techniques in Space Plasmas: Fields, Geophys. Monogr. Ser., 102, edited by J. Borovsky, R. Pfaff, and D. Young, pp. 73–78, AGU, Washington, DC.

    Google Scholar 

  20. Laakso, H., R. Pfaff, and P. Janhunen (2002), Polar observations of electron density distribution in the Earth’s magnetosphere. Density Profiles, Ann. Geophys., 20, 1725–1735.

    Article  ADS  Google Scholar 

  21. Labelle, J. and R. A. Treumann, Auroral radio emissions, hisses roars, and bursts, Space Sci. Rev., 101, 364–440, 2002.

    Article  Google Scholar 

  22. Lefeuvre, F., M. Parrot, J. L. Rauch, B. Poirier, A. Masson, and M. Mogilevsky (1998), Preliminary results from the MEMO multicomponent measurements of waves on-board INTERBALL 2, Ann. Geophys., 16, 1117–1136.

    Article  ADS  Google Scholar 

  23. Nagata, D., S. Machida, S. Ohtani, Y. Saito, and T. Mukai, Solar wind control of plasma number density in the near-Earth plasmasheet: three dimensional structure, Ann. Geophys., 26, 4031–4049, 2008.

    Article  ADS  Google Scholar 

  24. Nakagawa, T., T. Ishii, K. Tsuruda, H. Hayakawa, and T. Mukai (2000), Net current density of photoelectrons emitted from the surface of the GEOTAIL spacecraft, Earth Planets Space, 52, 283– 292.

    ADS  Google Scholar 

  25. Nykyri, K. and Otto, A. (2001), Plasma Transport at the Magnetospheric Boundary due to Reconnection in Kelvin-Helmholtz Vortices, Geophys. Res. Lett., 28(18), 3565–3568.

    Article  ADS  Google Scholar 

  26. Øieroset, M., J. Raeder, T. D. Phan, S. Wing, J. P. McFadden, W. Li, M. Fujimoto, H. Rème, and A. Balogh (2005), Global cooling and densification of the plasmasheet during an extended period of purely northward IMF on October 22–24, 2003, Geophys. Res. Lett., 32(12), L12S07, doi:10.1029/2004GL021523.

    Google Scholar 

  27. Parks, G. K., et al. (1992), Low-Energy particle Layer outside of the plasmasheet boundary, J. Geophys. Res., 97, 2943–2954.

    Article  ADS  Google Scholar 

  28. Paschmann, G., A. Fazakerley and S. Schwartz (1998), Moments of Plasma Velocity Distributions in Analysis Methods for Multi-Spacecraft Data, edited by G. Paschmann and P. W. Daly, ISSI Scientific Report SR-001, ISSI/ESA.

    Google Scholar 

  29. Paschmann, G., Quinn, J. M., Torbert, R. B., Vaith, H., McIlwain, C. E., Haerendel, G., Bauer, O. H., Bauer, T., Baumjohann, W., Fillius, W., Förster, M., Frey, S., Georgescu, E., Kerr, S. S., Kletzing, C. A., Matsui, H., Puhl-Quinn, P., and Whipple, E. C.: The Electron Drift Instrument on Cluster: overview of first results, Ann. Geophys., 19, 1273–1288, 2001.

    Article  ADS  Google Scholar 

  30. Pedersen, A. (1995), Solar wind and magnetosphere plasma diagnostics by spacecraft electrostatic potential measurements, Ann. Geophys., 13, 118–121, doi:10.1007/s00585-995-0118-8.

    Article  ADS  Google Scholar 

  31. Pedersen, A., F. Mozer, and G. Gustafsson (1998), Electric field measurements in a tenuous plasma with spherical double probes, in Measurement Techniques in Space Plasmas: Fields, Geophys. Monogr. Ser., vol. 103, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young, pp. 1–12, AGU, Washington, DC.

    Google Scholar 

  32. Pedersen, A., P. Décréau, C. P. Escoubet, G. Gustafsson, H. Laakso, P.-A. Lindqvist, B. Lybekk, A. Masson, F. S. Mozer, and A. Vaivads (2001), Four-point high time resolution information on electron densities by the electric field experiment (EFW) on Cluster, Ann. Geophys., 19, 1491–1504.

    Article  ADS  Google Scholar 

  33. Pedersen, A., B. Lybekk, M. André, A. Eriksson, A. Masson, F. Mozer, P.-A. Lindqvist, P. M. E. Décréau, I. Dandouras, J.-A. Sauvaud, A. Fazakerley, M. Taylor, G. Paschmann (2008), Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions, J. Geophys. Res., 113, A07S33, doi:10.1029/2007JA012636.

    Article  Google Scholar 

  34. Reinisch, B. W., et al. (2001), First results from the radio plasma imager in IMAGE, Geophys. Res. Lett., 28, 1167.

    Article  ADS  Google Scholar 

  35. Santolík, O., A. M. Persoon, D. A. Gurnett, P. M. E. Décréau, J. S. Pickett, O. Marsalek, M. Maksimovic, and N. Cornilleau-Wehrlin (2005), Drifting field-aligned density structures in the night-side polar cap, Geophys. Res. Lett., 32, L06106, doi:10.1029/2004GL021696.

    Article  Google Scholar 

  36. Scudder, J. D., X. Cao, and F. Mozer (2000), Photoemission current spacecraft voltage relation: Key to routine quantitative low energy plasma measurements, J. Geophys. Res., 105, 21,281, doi:10.1029/1999JA900423.

    Google Scholar 

  37. Stix, T. H. 1992, Waves in Plasmas, New York, American Institute of Physics.

    Google Scholar 

  38. Svenes, K.R., B. Lybekk, A. Pedersen, and S. Haaland (2008), Cluster observations of near-Earth magnetospheric lobe plasma densities – a statistical study, Ann. Geophys., 26, 2845–2852.

    Article  ADS  Google Scholar 

  39. Terasawa, T., Fujimoto, M., Mukai, T., Shinohara, I., Saito, Y., Yamamoto, T., Machida, S., Kokubun, S., Lazarus, A. J., Steinberg, J. T., and Lep**, R. P. (1997), Solar Wind control of density and temperature in the near-Earth plasmasheet: WIND/GEOTAIL collaboration, Geophys. Res. Lett., 24, 935–938.

    Article  ADS  Google Scholar 

  40. Thiébault, B., A. Hilgers, A. Masson, C. P. Escoubet, and H. Laakso (2006), Simulation of the Cluster-Spacecraft Floating Probe Potential, IEEE Nucl. Plasma Sci. Soc., 34(5), 2078–2083, doi:10.1109/TPS.2006.883407.

    Article  ADS  Google Scholar 

  41. Torkar, K., Riedler, W., Escoubet, C. P., Fehringer, M., Schmidt, R., Grard, R. J. L., Arends, H., Rüdenauer, F., Steiger, W., Narheim, B. T., Svenes, K., Torbert, R., André, M., Fazakerley, A., Goldstein, R., Olsen, R. C., Pedersen, A., Whipple, E., and Zhao, H.: Active spacecraft potential control for Cluster – implementation and first results, Ann. Geophys., 19, 1289–1302,

    Google Scholar 

  42. Trotignon, J. G., Etcheto, J., and J. P. Thouvenin (1986), Automatic determination of the electron density measured by the relaxation sounder on board ISEE-1, J. Geophys. Res., 91, 4302–4320.

    Article  ADS  Google Scholar 

  43. Trotignon, J. G., Décréau, P. M. E., Rauch, J. L., Suraud, X., Grimald, S., El-Lemdani Mazouz, F., Vallières, X., Canu, P., Darrouzet, F., Masson, A. (2006), The electron density around the Earth, a high level product of the Cluster/WHISPER relaxation sounder, Cluster and Double Star Symposium, 5th Anniversary of Cluster in Space, held 19–23 September, 2005 in Noordwijk, The Netherlands, edited by K. Fletcher, ESA SP-598, European Space Agency, published on CDROM., p. 70.1.

    Google Scholar 

Download references

Acknowledgements

This study has been triggered and discussed within the cross-calibration group of the Cluster Active Archive (CAA) sponsored by the European Space Agency. Ondrej Santolík acknowledges the grant support from GAAV IAA301120601 and NSF 0307319/ME 842.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Masson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this paper

Cite this paper

Masson, A. et al. (2010). Electron Density Estimation in the Magnetotail: a Multi-Instrument Approach. In: Laakso, H., Taylor, M., Escoubet, C. (eds) The Cluster Active Archive. Astrophysics and Space Science Proceedings. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3499-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-90-481-3499-1_18

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-3498-4

  • Online ISBN: 978-90-481-3499-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation