Viscosity Measurements Applied to Chalcogenide Glass-Forming Systems

  • Chapter
  • First Online:
Glassy, Amorphous and Nano-Crystalline Materials

Part of the book series: Hot Topics in Thermal Analysis and Calorimetry ((HTTC,volume 8))

  • 2148 Accesses

Abstract

Viscosity is an important physical parameter which determines the flow of material. The knowledge of viscous behaviour is important for example for the process of the material production. In the case of glasses and their undercooled melts, viscosity influences also the processes of structural relaxation and crystallization. Structural relaxation is in fact a very slow structural rearrangement of glass. This process can be realized through viscous flow and therefore is influenced by it. Crystallization process which may occur in undercooled melts is also influenced by the diffusion coefficient in the glassy matrix and therefore by its viscosity. This chapter tries to summarize the available viscosity data for chalcogenides and the basic measuring methods which are mostly often used to determine them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Plazek DJ (1968) Magnetic bearing torsional creep apparatus. J Polym Sci A2 6:621–638

    Google Scholar 

  2. Meyer OE (1891) Ein verfahren zur bestimmung der inneren reibung von flüssigkeiten. Ann Phys Chem 5:1–14

    Google Scholar 

  3. Holland FA, Bragg R (1995) Fluid flow for chemical engineers. Elsevier, Oxford

    Google Scholar 

  4. Brooks R, Dinsdale A, Quested P (2005) The measurement of viscosity of alloys – a review of methods: data and models. Meas Sci Technol 16:354–362

    Article  CAS  Google Scholar 

  5. Scholze H, Kreidl NJ (1983) Technological aspects of viscosity. In: Uhlmann R, Kreidel NJ (eds) Glass: science and technology. Academic, New York, pp 233–273

    Google Scholar 

  6. Littleton J (1927) A method for measuring the softening temperature of glasses. J Am Ceram Soc 10:259

    Article  CAS  Google Scholar 

  7. Kolomiets BT, Pozdnev VP (1960) Viscosity of As2Se3-As2Te3 glassy semiconductors (Russ.). Sov Phys-Sol State 2:28–34

    CAS  Google Scholar 

  8. Cox SM (1943) A method of viscosity measurement in the region 108 poises. J Sci Instrum 20:113–114

    Article  CAS  Google Scholar 

  9. Yang FQ, Li JCM (1997) Newtonian viscosity measured by impression test. J Non-Cryst Solids 212:126–135

    Article  CAS  Google Scholar 

  10. Nemilov SV, Petrovskii GT (1963) New method for measuring of viscosity of glasses (Russ.). J Appl Chem-USSR 36:222–225

    CAS  Google Scholar 

  11. Exnar P, Hruba M, Uhlir J, Voldan J (1980) Experience with the penetration viscosimeter. Silikaty 24:169–179

    Google Scholar 

  12. Gent AN (1960) Theory of the parallel plate viscometer. Br J Appl Phys 11:85–87

    Article  CAS  Google Scholar 

  13. Hagy HE (1963) Experimental evaluation of beam-bending method of determining glass viscosities in the range 108 to 1015 poises. J Am Ceram Soc 46:93–97

    Article  CAS  Google Scholar 

  14. Eisenberg A, Tobolsky AV (1962) Viscoelastic properties of amophous selenium. J Polym Sci 61:483–495

    Article  CAS  Google Scholar 

  15. Pohl KD, Bruckner R (1981) Structural viscosity of sulfur and arsenic sulfide melts – density and refractive-index. Phys Chem Glasses 22:150–157

    CAS  Google Scholar 

  16. Prod´homme M (1956) Viscosité des verres dans le domaine de transformation. Verres Refract 4:208–214

    Google Scholar 

  17. Malek J (1998) Dilatometric study of structural relaxation in arsenic sulfide glass. Thermochim Acta 311:183–198

    Article  CAS  Google Scholar 

  18. Suzuki S, Kamiya Y, Suzuki Y, Kobayashi T (1972) Viscosity of glass in the transition region in the systems arsenic-sulfur, arsenic-sulfur-iodine, and arsenic-sulfur-thallium (Jpn.). J Soc Mater Sci Jpn 21:143–147

    Article  Google Scholar 

  19. Nemilov SV (1979) Valence structure, viscous and elastic properties of as-S melts (Russ.). Fiz Chim Stekla 5:398–409

    CAS  Google Scholar 

  20. Nemilov SV (1964) Relation between free energy of activation for viscous flow and energy of chemical bonds in glasses (Russ.). Solid State Phys 6:1375–1379

    CAS  Google Scholar 

  21. Kubacki W (1973) Effect of heat treatment on chlacogenide glass – part 1. Verres Refract 27:105–116

    CAS  Google Scholar 

  22. Vinogradova GZ, Dembovskii SA, Kuzmina TN, Chernov AP (1967) Viscosity and structure of As-S glasses (Russ.). Zh Neorg Chim 12:3240–3247

    CAS  Google Scholar 

  23. Zhukina NE, Orlova GM, Chalabjan GA (1979) Viscous and elastic properties of As-S-Tl glasses (Russ.). Fiz Chim Stekla 5:223–228

    Google Scholar 

  24. Chernov AP, Dembovskii SA, Machova VI (1970) Viscosity and structure of As2X3-AsI3 glasses (Russ.). Izv Akad Nauk SSSR Neorg Mater 6:823–825

    CAS  Google Scholar 

  25. Kunugi M, Ota R, Suzuki M (1970) Viscosity of glasses in the system As-Se, As-Se-S, As-Se-Te and As-Se-Tl (Jpn.). J Soc Mater Sci Jpn 19:145–150

    Article  CAS  Google Scholar 

  26. Vinogradova GZ, Dembovskii SA, Anisimova TN (1970) Study of viscosity of As2S3-Tl2S and As2Se3-Tl2Se glasses (Russ.). Zh Neorg Chim 15:1949–1952

    CAS  Google Scholar 

  27. Dembovskii SA (1968) Identification and properties of chemical compounds TlAsS2, TlAsSe2 and TlAsTe2 in glassy and crystalline form (Russ.). Izv Akad Nauk SSSR Neorg Mater 4:1920–1926

    CAS  Google Scholar 

  28. Brady DJ, Wang J, Hewak DW (1998) Viscosity of chalcogenide glass. In: Hewak D (ed) Properties, processing and applications of glass and rare earth-doped glasses for optical fibres. INSPEC, London, pp 309–312

    Google Scholar 

  29. Malek J, Shanelova J (1999) Viscosity of germanium sulfide melts. J Non-Cryst Solids 243:116–122

    Article  CAS  Google Scholar 

  30. Shanelova J, Kostal P, Malek J (2006) Viscosity of (GeS2)(x)(Sb2S3)(1-x) supercooled melts. J Non-Cryst Solids 352:3952–3955

    Article  CAS  Google Scholar 

  31. Seddon AB, Hemingway MA (1991) Thermal-properties of chalcogenide-halide glasses in the system – Ge-S-I. J Therm Anal 37:2189–2203

    Article  CAS  Google Scholar 

  32. Cukierman M, Uhlmann DR (1973) Viscous flow behavior of selenium. J Non-Cryst Solids 12:199–206

    Article  CAS  Google Scholar 

  33. Yang FQ, Li JCM (1997) Viscosity of selenium measured by impression test. J Non-Cryst Solids 212:136–142

    Article  CAS  Google Scholar 

  34. Jenckel E (1937) Die Vorgänge bei der Abkühlung von Gläsern und Kunstharzen. Z Elektrochem 43:796–806

    CAS  Google Scholar 

  35. Jenckel VE (1938) Über Strukturviskosität an erweichendem Selenglas. Kolloid Z 84:266–268

    Article  CAS  Google Scholar 

  36. Bernatz K, Echeverria I, Simon S, Plazek D (2002) Characterization of the molecular structure of amorphous selenium using recoverable creep compliance measurements. J Non-Cryst Solids 307:790–801

    Article  Google Scholar 

  37. Nemilov SV, Petrovskii GT (1963) Study of viscosity of glassy system Se-As (Russ.). J Appl Chem-USSR 36:977–981

    CAS  Google Scholar 

  38. Hamada S, Yoshida NTS (1969) On the viscosity of liquid selenium. Bull Chem Soc Jpn 42:1025–1029

    Article  CAS  Google Scholar 

  39. Harrison DE (1964) Effect of pressures (up to 4 kbar) on polymerization of liquid selenium from measurements of viscosity. J Chem Phys 41:844–849

    Article  CAS  Google Scholar 

  40. Khalilov KM, Kuliev BB (1965) Temperature dependence of viscous properties of amorphous selenium (Russ.). Fiz Tverd Tela 7:2847–2848

    CAS  Google Scholar 

  41. Khalilov KM (1959) Viscosity of molten selenium (Russ.). Izv Akad Nauk Azerb SSR 6:67–70

    Google Scholar 

  42. Ueberreiter K, Orthmann HJ (1951) Viscosity of glassy selenium from 0°C to 100°C. Kolloid Z 123:84–91

    Article  CAS  Google Scholar 

  43. Krebs H, Morsch W (1950) Die Molekelgröße des amorphen schwarzen Selens. Z Anorg Allg Chem 263:305–309

    Article  CAS  Google Scholar 

  44. Dzhalilov SU, Orudzheva SO (1966) Viscosity of amorphous selenium doped by antimony (Russ.). Zh Fiz Chim 60:2130–2132

    Google Scholar 

  45. Keezer RC, Bailey MW (1967) The structure of liquid selenium from viscosity measurements. Mater Res Bull 2:185–192

    Article  CAS  Google Scholar 

  46. Shirai T, Hamada S, Kobayaski K (1963) Viscous flow of selenium liquid. J Chem Soc Jpn 84:968–972

    CAS  Google Scholar 

  47. Dobinski S, Wesolowski J (1937) On the viscosity of liquid selenium. Bull Int Acad Polon Sci Lett Part A 7:7–14

    Google Scholar 

  48. Senapati U, Varshneya AK (1996) Viscosity of chalcogenide glass-forming liquids: An anomaly in the ‘strong’ and ‘fragile’ classification. J Non-Cryst Solids 197:210–218

    Article  CAS  Google Scholar 

  49. Anthonis HE, Kreidel NJ, Ratzenboeck WH (1973/1974) Polynary silicon arsenic chalcogenide glasses with high softening temperatures. J Non-Cryst Solids 13:13–36

    Article  CAS  Google Scholar 

  50. Webber PJ, Savage JA (1981) Measurement of the viscosity of chalcogenide glasses by a parallel plate technique. J Mater Sci 16:763–766

    Article  CAS  Google Scholar 

  51. Henderson DW, Ast DG (1984) Viscosity and crystallization kinetics of As2Se3. J Non-Cryst Solids 64:43–70

    Article  CAS  Google Scholar 

  52. Kostál P, Shanelova J, Malek J (2005) Viscosity of Cu-x(AS(2)Se(3))100-(x) supercooled melts. J Non-Cryst Solids 351:3152–3155

    Article  Google Scholar 

  53. Orlova GM, Udalov SS, Manachova EN (1985) Elastic and thermal properties of AsSe-TlSe and As2Se3-Tl2Se glasses (Russ.). Fiz Chim Stekla 11:215–218

    CAS  Google Scholar 

  54. Webber PJ, Savage JA (1976) Some physical properties of Ge-As-Se infrared optical glasses. J Non-Cryst Solids 20:271–283

    Article  CAS  Google Scholar 

  55. Le Bourhis E, Gadaud P, Guin JP, Tournerie N, Zhang XH, Lucas J, Rouxel T (2001) Temperature dependence of the mechanical behaviour of a GeAsSe glass. Scr Mater 45:317–323

    Article  Google Scholar 

  56. Nemilov SV (1964) Viscosity and structure of As-Ge-Se glasses in the region of low selenium content (Russ.). J Appl Chem-USSR 37:1699–1708

    CAS  Google Scholar 

  57. Nemilov SV (1964) Viscosity and structure of As-Ge-Se glasses in the region of high selenium content (Russ.). J Appl Chem-USSR 37:1452–1457

    CAS  Google Scholar 

  58. Nguyen VQ, Sanghera JS, Aggarwal ID, Lloyd IK (2000) Physical properties of chalcogenide and chalcohalide glasses. J Am Ceram Soc 83:855–859

    Article  CAS  Google Scholar 

  59. Morgan SP, Furniss D, Seddon AB (1996) Lanthanum-fluoride addition to gallium-lanthanum-sulphide glasses. J Non-Cryst Solids 203:135–142

    Article  CAS  Google Scholar 

  60. Kostal P, Malek J (2007) Viscosity of (GeSe2)(x)(Sb2Se3)(1-x) undercooled melts. J Non-Cryst Solids 353:2803–2806

    Article  CAS  Google Scholar 

  61. Nemilov SV (1964) Viscosity and structure of Se-Ge glasses (Russ.). J Appl Chem-USSR 37:1020–1024

    CAS  Google Scholar 

  62. Korepanova NA, Orlova GM, Pazin AV (1976) Study of the structural-chemical features of Sb-Ge-Se glasses by a viscometric method (Russ.). J Appl Chem-USSR 49:36–40

    CAS  Google Scholar 

  63. Kim EI, Orlova GM (1974) Viscosity of P-Se glass system (Russ.). J Appl Chem-USSR 47:989–992

    CAS  Google Scholar 

  64. Orlova GM, Kolomejtseva SE, Timonov AS, Kuznetsova OA (1979) Viscosity and thermal expansion of P-Se-Te glasses (Russ.). Fiz Chim Stekla 5:546–551

    CAS  Google Scholar 

  65. Kolesnikov NN (1992) Viscosity of ZnSe melt (Russ.). Zh Fiz Chim 66:760–763

    CAS  Google Scholar 

  66. Glazov VM, Grabchak NM (1978) Change in short-range order structure when silver chalcogenide melts are heated (Russ.). Neorg Mater 14:466–468

    CAS  Google Scholar 

  67. Chaussemy G, Fornazero J, Mackowski JM (1983) Relationship between viscosity and structure in AsxS1-x molten materials. J Non-Cryst Solids 58:219–234

    Article  CAS  Google Scholar 

  68. Glazov VM, Mal’sagov AU (1977) Change in short-range order during heating of melts of certain compounds of Type AIBIIIC VI2 and Type AIBVC VI2 (Russ.). Neorg Mater 13:1383–1386

    CAS  Google Scholar 

  69. Glazov VM, Burchanov AS, Krestovnikov AN (1971) Change in Short-range order structure in melts of Cu2BVI compounds during heating (Russ.). IVZ VUZ Tsvetnaya Metallurgia 14:95–100

    Google Scholar 

  70. Glazov VM, Burchanov AS (1994) Viscosity of melts in pseudobinary systems of copper chalcogenides (Russ.). Neorg Mater 30:741–746

    CAS  Google Scholar 

  71. Glazov VM (2000) Structural Inhomogeneity of melts in quasi-binary systems formed by copper chalcogenides (Russ.). Zh Fiz Chim 74:586–594

    CAS  Google Scholar 

  72. Glazov VM (2000) Temperature dependence of viscosity and density of the melts of quasi-binary systems formed by copper chalcogenides (Russ.). Teplofiz Vysok Temp 38:557–565

    Google Scholar 

  73. Glazov VM, Situlina OV (1970) Temperature variation in short-range structure of molten germanium and tin sulphide and selenide (Russ.). Zh Fiz Chim 44:2480–2485

    CAS  Google Scholar 

  74. Glagoleva NN, Krestovnikov AN, Glazov VM (1968) Change in short-range order and character of chemical bonds of IV group chalcogenide melts with galenite structure upon heating (Russ.). Neorg Mater 4:1890–1897

    CAS  Google Scholar 

  75. Fisher VM, Krebs H (1974) Untersuchungen über die Viskosität von Chalcogenidschmelzen. Glass Sci Technol 47:42–51

    Google Scholar 

  76. Laugier A, Chaussemy G, Fornazero J (1977) Viscosity of glass-forming Ge-Se liquid solutions. J Non-Cryst Solids 23:419–429

    Article  CAS  Google Scholar 

  77. Chaussemy G, Fornazero J, Laugier A (1976) Influence of germanium on viscosity of liquid selenium. J Phys Lett Paris 37:L283–L285

    Article  Google Scholar 

  78. Chaussemy G, Fornazero J, Laugier A (1977) Viscosity measurements for GexSe1-x liquids in simple vitrification compositions and notion of association. Rev Phys Appl 12:687–690

    Article  CAS  Google Scholar 

  79. Kadoun A, Chaussemy G, Fornazero J, Mackowski JM (1983) Kinematic viscosity of AsxSe1-x glass forming liquids. J Non-Cryst Solids 57:101–108

    Article  CAS  Google Scholar 

  80. Tverjanovich AS, Skorobogatova I (1990) Viscosity of As2Se3-Tl2Se melts (Russ.). Fiz Chim Stekla 16:369–373

    Google Scholar 

  81. Glazov VM, Burchanov AS, Krestovnikov AN (1971) Physico-chemical analysis of Cu-Se and Cu-Te melts (Russ.). Neorg Mater 7:1494–1496

    CAS  Google Scholar 

  82. Chaussemy G, Fornazero J, Laugier A (1980) Viscosity and local order in PbxSe(1-x) melts. J Phys Paris 41:371–373

    Article  Google Scholar 

  83. Aleksandrov AA, Andrianova TN, Ochotin VS, Razumeichenko LA, Panina ZI (1977) Study of the density and viscosity of tin-selenium system melts (Russ.). Teplofiz Vysok Temp 15:47–52

    CAS  Google Scholar 

  84. Tverjanovich AS, Kasatkina EB (1992) Viscosity of As-Te melts (Russ.). Fiz Chim Stekla 18:86–93

    Google Scholar 

  85. Glazov VM, Krestovnikov AN, Glagoleva NN (1965) Physico-chemical analysis of binary systems formed by tellurium with germanium subgroup elements in liquid state (Russ.). Dokl Akad Nauk SSSR 162:94–97

    CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education Youth and Sports of the Czech Republic under project: LC 523 and the Czech Science Foundation under grant No: 104/08/1021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petr Koštál .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Koštál, P., Shánělová, J., Málek, J. (2011). Viscosity Measurements Applied to Chalcogenide Glass-Forming Systems. In: Šesták, J., Mareš, J., Hubík, P. (eds) Glassy, Amorphous and Nano-Crystalline Materials. Hot Topics in Thermal Analysis and Calorimetry, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2882-2_10

Download citation

Publish with us

Policies and ethics

Navigation