Fragment-Based Drug Discovery in Academia: Experiences From a Tuberculosis Programme

  • Conference paper
From Molecules to Medicines

Abstract

The problems associated with neglected diseases are often compounded by increasing incidence of antibiotic resistance. Patient negligence and abuse of antibiotics has lead to explosive growth in cases of tuberculosis, with some M. tuberculosis strains becoming virtually untreatable. Structure-based drug development is viewed as cost-effective and time-consuming method for discovery and development of hits to lead compounds. In this review we will discuss the suitability of fragment-based methods for develo** new chemotherapeutics against neglected diseases, providing examples from our tuberculosis programme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alex AA, Flocco MM. Fragment-based drug discovery: what has it achieved so far? Curr Top Med Chem. 2007; 7(16):1544–67.

    Article  Google Scholar 

  • Barry CE 3rd, Lee RE, Mdluli K, Sampson AE, Schroeder BG, Slayden RA, Yuan Y. Mycolic acids: structure, biosynthesis and physiological functions. Prog Lipid Res. 1998; 37(2–3):143–79.

    Article  Google Scholar 

  • Bentley R. The shikimate pathway–a metabolic tree with many branches. Crit Rev Biochem Mol Biol. 1990; 25(5):307–84.

    Article  Google Scholar 

  • Beste DJ, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell ME, Wheeler P, Klamt S, Kierzek AM, McFadden J. GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol. 2007; 8(5):R89.

    Article  Google Scholar 

  • Blundell TL. Structure-based drug design. Nature. 1996; 384(6604 Suppl):23–6.

    Google Scholar 

  • Blundell TL, Jhoti H, Abell C. High-throughput crystallography for lead discovery in drug design. Nat Rev Drug Discov. 2002; 1(1):45–54.

    Article  Google Scholar 

  • Bosch J, Robien MA, Mehlin C, Boni E, Riechers A, Buckner FS, Van Voorhis WC, Myler PJ, Worthey EA, DeTitta G, Luft JR, Lauricella A, Gulde S, Anderson LA, Kalyuzhniy O, Neely HM, Ross J, Earnest TN, Soltis M, Schoenfeld L, Zucker F, Merritt EA, Fan E, Verlinde CL, Hol WG. Using fragment cocktail crystallography to assist inhibitor design of Trypanosoma brucei nucleoside 2-deoxyribosyltransferase. J Med Chem. 2006; 49(20):5939–46.

    Article  Google Scholar 

  • Caldwell JJ, Davies TG, Donald A, McHardy T, Rowlands MG, Aherne GW, Hunter LK, Taylor K, Ruddle R, Raynaud FI, Verdonk M, Workman P, Garrett MD, Collins I. Identification of 4-(4-Aminopiperidin-1-yl)-7H-pyrrolo[2,3-d]pyrimidines as Selective Inhibitors of Protein Kinase B through Fragment Elaboration. J Med Chem. 2008; 51(7):2147–57.

    Article  Google Scholar 

  • Cardona PJ. New insights on the nature of latent tuberculosis infection and its treatment. Inflamm Allergy Drug Targets. 2007; 6(1):27–39.

    Article  MathSciNet  Google Scholar 

  • Chung CW. The use of biophysical methods increases success in obtaining liganded crystal structures. Acta Crystallogr D Biol Crystallogr. 2007; 63(Pt 1):62–71.

    Google Scholar 

  • Ciulli A, Williams G, Smith AG, Blundell TL, Abell C. Probing hot spots at protein-ligand binding sites: a fragment-based approach using biophysical methods. J Med Chem. 2006; 49(16):4992–5000.

    Article  Google Scholar 

  • Ciulli A, Scott DE, Ando M, Reyes F, Saldanha SA, Tuck KL, Chirgadze DY, Blundell TL, and Abell C. Inhibition of Mycobacterium tuberculosis pantothenate synthetase by analogues of the reaction intermediate. ChemBioChem. 2008; 9(16):2606–2611.

    Article  Google Scholar 

  • Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE 3rd, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA, Rajandream MA, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S, Barrell BG. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998; 393(6685):537–44.

    Article  ADS  Google Scholar 

  • Congreve M, Carr R, Murray C, Jhoti H. A ‘rule of three’ for fragment-based lead discovery? Drug Discov Today. 2003; 8(19):876–7.

    Article  Google Scholar 

  • Congreve M, Murray CW, Blundell TL. Structural biology and drug discovery. Drug Discov Today. 2005; 10(13):895–907.

    Article  Google Scholar 

  • Dalvit C, Fogliatto G, Stewart A, Veronesi M, Stockman B. WaterLOGSY as a method for primary NMR screening: practical aspects and range of applicability. J Biomol NMR. 2001; 21(4):349–59.

    Article  Google Scholar 

  • Dias MV, Faím LM, Vasconcelos IB, de Oliveira JS, Basso LA, Santos DS, de Azevedo WF Jr. Effects of the magnesium and chloride ions and shikimate on the structure of shiki-mate kinase from Mycobacterium tuberculosis. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2007; 63(Pt 1):1–6.

    Google Scholar 

  • Dover LG, Cerdeno-Tárraga AM, Pallen MJ, Parkhill J, Besra GS. Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev. 2004; 28(2):225–50.

    Article  Google Scholar 

  • Dubnau E, Chan J, Raynaud C, Mohan VP, Lanéelle MA, Yu K, Quémard A, Smith I, Daffé M. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol. 2000; 36(3):630–7.

    Article  Google Scholar 

  • Garbe T, Servos S, Hawkins A, Dimitriadis G, Young D, Dougan G, Charles I. The Myco-bacterium tuberculosis shikimate pathway genes: evolutionary relationship between biosynthetic and catabolic 3-dehydroquinases. Mol Gen Genet. 1991; 228(3):385–92.

    Article  Google Scholar 

  • George KM, Yuan Y, Sherman DR, Barry CE 3rd. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J Biol Chem. 1995; 270(45):27292–8.

    Article  Google Scholar 

  • González-Bello C, Castedo L. Progress in type II dehydroquinase inhibitors: from concept to practice. Med Res Rev. 2007; 27(2):177–208.

    Article  Google Scholar 

  • Gould TA, van de Langemheen H, Munoz-Elías EJ, McKinney JD, Sacchettini JC. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol Microbiol. 2006; 61(4):940–7.

    Article  Google Scholar 

  • Gourley DG, Shrive AK, Polikarpov I, Krell T, Coggins JR, Hawkins AR, Isaacs NW, Sawyer L. The two types of 3-dehydroquinase have distinct structures but catalyze the same overall reaction. Nat Struct Biol. 1999; 6(6):521–5.

    Article  Google Scholar 

  • Guerin ME, Kordulakova J, Schaeffer F, Svetlikova Z, Buschiazzo A, Giganti D, Gicquel B, Mikusova K, Jackson M, Alzari PM. Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J Biol Chem. 2007; 282(28):20705–14.

    Article  Google Scholar 

  • Hajduk PJ, Greer J. A decade of fragment-based drug design: strategic advances and lessons learned. Nat Rev Drug Discov. 2007; 6(3):211–9.

    Article  Google Scholar 

  • Hartmann MD, Bourenkov GP, Oberschall A, Strizhov N, Bartunik HD. Mechanism of phosphoryl transfer catalyzed by shikimate kinase from Mycobacterium tuberculosis. J Mol Biol. 2006; 364(3):411–23.

    Article  Google Scholar 

  • Hartshorn MJ, Murray CW, Cleasby A, Frederickson M, Tickle IJ, Jhoti H. Fragment-based lead discovery using X-ray crystallography. J Med Chem. 2005; 48(2):403–13.

    Article  Google Scholar 

  • Holdgate GA, Ward WH. Measurements of binding thermodynamics in drug discovery. Drug Discov Today. 2005; 10(22):1543–50.

    Article  Google Scholar 

  • Holton SJ, Weiss MS, Tucker PA, Wilmanns M. Structure-based approaches to drug discovery against tuberculosis. Curr Protein Pept Sci. 2007; 8(4):365–75.

    Article  Google Scholar 

  • Hopkins AL, Groom CR, Alex A. Ligand efficiency: a useful metric for lead selection. Drug Discov Today. 2004; 9(10):430–1.

    Article  Google Scholar 

  • Howard N, Abell C, Blakemore W, Chessari G, Congreve M, Howard S, Jhoti H, Murray CW, Seavers LC, van Montfort RL. Application of fragment screening and fragment linking to the discovery of novel thrombin inhibitors. J Med Chem. 2006; 49(4):1346–55.

    Article  Google Scholar 

  • Huang CC, Smith CV, Glickman MS, Jacobs WR Jr, Sacchettini JC. Crystal structures of mycolic acid cyclopropane synthases from Mycobacterium tuberculosis. J Biol Chem. 2002; 277(13):11559–69.

    Article  Google Scholar 

  • Jones G, Willet P, Glen RC. Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol. 1995; 245(1): 43–53.

    Article  Google Scholar 

  • Jones G, Willet P, Glen RC, Leach AR, Taylor R. Development and validation of a genetic algorithm for flexible docking. J Mol Biol. 1997; 267(3):727–48.

    Article  Google Scholar 

  • Kairys V, Fernandes MX, Gilson MK. Screening drug-like compounds by docking to homology models: a systematic study. J Chem Inf Model. 2006; 46(1):365–79.

    Article  Google Scholar 

  • Korduláková J, Gilleron M, Puzo G, Brennan PJ, Gicquel B, Mikusová K, Jackson M. Identification of the required acyltransferase step in the biosynthesis of the phosphatidylinositol mannosides of mycobacterium species. J Biol Chem. 2003; 278(38):36285–95.

    Article  Google Scholar 

  • Lepre CA, Moore JM, Peng JW. Theory and applications of NMR-based screening in pharmaceutical research. Chem Rev. 2004; 104(8):3641–76.

    Article  Google Scholar 

  • Liao YL, Sun YM, Chau GY, Chau YP, Lai TC, Wang JL, Horng JT, Hsiao M, Tsou AP. Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene. 2008; in press.

    Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001; 46(1–3):3–26.

    Article  Google Scholar 

  • Lo MC, Aulabaugh A, ** G, Cowling R, Bard J, Malamas M, Ellestad G. Evaluation of fluorescence-based thermal shift assays for hit identification in drug discovery. Anal Biochem. 2004; 332(1):153–9.

    Article  Google Scholar 

  • Mayer M, Meyer B. Group epitope map** by saturation transfer difference NMR to identify segments of a ligand in direct contact with a protein receptor. J Am Chem Soc. 2001; 123(25):6108–17.

    Article  Google Scholar 

  • McKinney JD, Höner zu Bentrup K, Munoz-Elías EJ, Miczak A, Chen B, Chan WT, Swenson D, Sacchettini JC, Jacobs WR Jr, Russell DG. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature. 2000; 406(6797):735–8.

    Article  ADS  Google Scholar 

  • Parish T, Stoker NG. The common aromatic amino acid biosynthesis pathway is essential in Mycobacterium tuberculosis. Microbiology. 2002; 148(Pt 10):3069–77.

    Google Scholar 

  • Radestock S, Weil T, Renner S. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. J Chem Inf Model. 2008; 48(5):1104–17.

    Article  Google Scholar 

  • Sambandamurthy VK, Wang X, Chen B, Russell RG, Derrick S, Collins FM, Morris SL, Jacobs WR Jr. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat Med. 2002; 8(10):1171–4.

    Article  Google Scholar 

  • Sharma V, Sharma S, Hoener zu Bentrup K, McKinney JD, Russell DG, Jacobs WR Jr, Sacchettini JC. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat Struct Biol. 2000; 7(8):663–8.

    Article  Google Scholar 

  • Silveira NJ, Bonalumi CE, Uchoa HB, Pereira JH, Canduri F, de Azevedo WF. DBMODELING: a database applied to the study of protein targets from genome projects. Cell Biochem Biophys. 2000; 44(3):366–74.

    Article  Google Scholar 

  • Silveira NJ, Uchoa HB, Pereira JH, Canduri F, Basso LA, Palma MS, Santos DS, de Azevedo WF Jr. Molecular models of protein targets from Mycobacterium tuberculosis. J Mol Model. 2005; 11(2):160–6.

    Article  Google Scholar 

  • Searls DB. Pharmacophylogenomics: genes, evolution and drug targets. Nat Rev Drug Discov. 2003; 2(8):613–23.

    Article  Google Scholar 

  • Smith CV, Huang CC, Miczak A, Russell DG, Sacchettini JC, Höner zu Bentrup K. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J Biol Chem. 2003; 17; 278(3):1735–43.

    Article  Google Scholar 

  • Sorensen TL, McAuley KE, Flaig R, Duke EM. New light for science: synchrotron radiation in structural medicine. Trends Biotechnol. 2006; 24(11):500–8.

    Article  Google Scholar 

  • Tonge PJ, Kisker C, Slayden RA. Development of modern InhA inhibitors to combat drug resistant strains of Mycobacterium tuberculosis. Curr Top Med Chem. 2007; 7(5):489–98.

    Article  Google Scholar 

  • Toscano MD, Payne RJ, Chiba A, Kerbarh O, Abell C. Nanomolar inhibition of type II dehydro-quinase based on the enolate reaction mechanism. ChemMedChem. 2007; 2(1):101–12.

    Article  Google Scholar 

  • Tufariello JM, Chan J, Flynn JL. Latent tuberculosis: mechanisms of host and bacillus that contribute to persistent infection. Lancet Infect Dis. 2003; 3(9):578–90.

    Article  Google Scholar 

  • Velaparthi S, Brunsteiner M, Uddin R, Wan B, Franzblau SG, Petukhov PA. 5-tert-Butyl-N-pyrazol-4-yl-4,5,6,7-tetrahydrobenzo[d]isoxazole-3-carboxamide Derivatives as Novel Potent Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase: Initiating a Quest for New Antitubercular Drugs. J Med Chem. 2008; 51(7):1999–2002.

    Article  Google Scholar 

  • von Delft F, Lewendon A, Dhanaraj V, Blundell TL, Abell C, Smith AG. The crystal structure of E. coli pantothenate synthetase confirms it as a member of the cytidylyltransferase superfamily. Structure. 2001; 9(5):439–50.

    Article  Google Scholar 

  • Wang S, Eisenberg D. Crystal structure of the pantothenate synthetase from Mycobacterium tuberculosis, snapshots of the enzyme in action. Biochemistry. 2006; 45(6):1554–61.

    Article  Google Scholar 

  • White EL, Southworth K, Ross L, Cooley S, Gill RB, Sosa MI, Manouvakhova A, Rasmussen L, Goulding C, Eisenberg D, Fletcher TM 3rd. A novel inhibitor of Myco-bacterium tuberculosis pantothenate synthetase. J Biomol Screen. 2007; 12(1):100–5.

    Article  Google Scholar 

  • WHO Report 2008, Global tuberculosis control – surveillance, planning, financing, WHO/ HTM/TB/2008.393

    Google Scholar 

  • Worth CL, Bickerton GR, Schreyer A, Forman JR, Cheng TM, Lee S, Gong S, Burke DF, Blundell TL. A structural bioinformatics approach to the analysis of nonsynonymous single nucleotide polymorphisms (nsSNPs) and their relation to disease., J Bioinform Comput Biol. 2007; 5(6):1297–318.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media B.V.

About this paper

Cite this paper

Heikkila, T.J. et al. (2009). Fragment-Based Drug Discovery in Academia: Experiences From a Tuberculosis Programme. In: Sussman, J.L., Spadon, P. (eds) From Molecules to Medicines. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2339-1_3

Download citation

Publish with us

Policies and ethics

Navigation