Hamiltonian Structure of 2+1 Dimensional Gravity

  • Conference paper
Recent Developments in General Relativity, Genoa 2000
  • 208 Accesses

Abstract

A summary is given of some results and perspectives of the hamiltonian ADM approach to 2 + 1 dimensional gravity. After recalling the classical results for closed universes in the absence of matter, we go over the the case in which matter is present in the form of point spinless particles. Here the maximally slicing gauge proves most effective by relating 2 + 1 dimensional gravity to the Riemann-Hilbert problem. It is possible to solve the gravitational field in terms of the particle degrees of freedom thus reaching a reduced dynamics which involves only the particle positions and momenta. Such a dynamics is proven to be hamiltonian and the hamiltonian is given by the boundary term in the gravitational action. As an illustration, the two body hamiltonian is used to provide the canonical quantization of the two particle system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Staruszkiewicz, A. (1963): Acta Phys. Polonica 24, 734

    MathSciNet  Google Scholar 

  2. Deser, S., Jackiw, R., ’t Hooft, G. (1984): Ann. Phys. (NY) 152, 220

    Google Scholar 

  3. Deser, S., Jackiw, R. (1984): Ann. Phys. 153, 405

    Google Scholar 

  4. Arnowitt, R., Deser, S., Misner, C.W. (1962): The dynamics of general relativity, in Gravitation: An introduction to current research, ed. by L. Witten, John Wiley & Sons, New York, London, pp. 227–265

    Google Scholar 

  5. Moncrief, V. (1989): J. Math. Phys. 30, 2907

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Hosoya, A., Nakao, K. (1990): Class. Quantum Grav. 7, 163

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Hosoya, A., Nakao, K. (1990): Progr. Theor. Phys. 84, 739

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Carlip, S. (1990): Phys. Rev. D 42, 2647; (1992): Phys. Rev. D 45, 3584

    Article  MathSciNet  ADS  Google Scholar 

  9. Maass, H. (1964): Lectures on modular functions of one complex variable. Tata Institute, Bombay

    MATH  Google Scholar 

  10. Fay, J.D. (1977): J. Reine Angew. Math. 293, 143

    MathSciNet  Google Scholar 

  11. Terras, A. (1985): Harmonic analysis on symmetric spaces and applications. Springer-Verlag, Berlin Heidelberg New York

    Book  MATH  Google Scholar 

  12. Puzio, R. (1994): Classical and Quantum Gravity 11, 609

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Hawking, S.W., Hunter, C.J. (1996): Class. Quantum Grav. 13, 2735; Hayward, G. (1993): Phys. Rev. D 47, 3275

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Brown, J.D., Lau, S.R., York, J.W: gr-qc/ 0010024

    Google Scholar 

  15. Wald, R.M. (1984): General relativity. The University of Chicago Press, Chicago and London

    Book  MATH  Google Scholar 

  16. Bellini, A., Ciafaloni, M., Valtancoli, P. (1995): Physics Lett. B 357, 532; (1996): Nucl. Phys. B 462, 453

    Article  MathSciNet  ADS  Google Scholar 

  17. Welling, M. (1996): Class. Quantum Grav. 13, 653; (1998): Nucl. Phys. B 515, 436

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Menotti, P., Seminara, D. (2000): Ann. Phys. 279, 282

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Menotti, P., Seminara, D. (2000): Nucl. Phys. [Proc. Suppl.] 88, 132

    Article  MathSciNet  ADS  Google Scholar 

  20. Cantini, L., Menotti, P., Seminara, D. (2001): Classical and quantum gravity, 18, 2253–2275

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Liouville, J. (1853): J. Math. Pures Appl. 18, 71; Poincaré, H. (1898): J. Math. Pures Appl. 5, ser.2, 157; Ginsparg, P., Moore, G.: hep-th/9304011; Takhtajan, L. (1994): Topics in quantum geometry of Riemann surfaces: Two dimensional quantum gravity, in Quantum groups and their applications in physics: Proceedings of the International School of Physics “Enrico Fermi”, Course 127, Varenna on Lake Como, Villa Monastero 28 June-8 July 1994, ed. by L. Castellani, J. Wess, pp. 541-579; hep-th/9409088; Kra, I. (1972): Automorphic forms and Kleinian groups. Benjamin, Reading, MA

    Google Scholar 

  22. Deser, S. (1985): Class. Quantum Grav. 2 489

    Article  MathSciNet  ADS  Google Scholar 

  23. Bolibrukh, A.A. (1990): Uspekhi Mat. Nauk 45, 2, 3

    MathSciNet  Google Scholar 

  24. Henneaux, M. (1984): Phys. Rev. D 29, 2767

    Article  MathSciNet  ADS  Google Scholar 

  25. Ashtekar, A., Varadarajan, M. (1994): Phys. Rev. D 50, 4944

    Article  MathSciNet  ADS  Google Scholar 

  26. ’t Hooft, G. (1988): Commun. Math. Phys. 117, 685

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Yoshida, M. (1987): Fuchsian differential equations. Fried. Vieweg & Sohn, Braunschweig

    Google Scholar 

  28. Okamoto, K. (1986): J. Fac. Sci. Tokio Univ. 33

    Google Scholar 

  29. Zograf, P.G., Tahktajan, L.A. (1988): Math. USSR Sbornik 60, 143

    Article  MATH  Google Scholar 

  30. Takhtajan, L.A. (1996): Mod. Phys. Lett. A 11 93

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. ’t Hooft, G. (1992): Class. Quantum Grav. 9, 1335; (1993): Class. Quantum Grav. 10, 1023; (1993): Class. Quantum Grav. 10, 1653; (1996): Class. Quantum Grav. 13, 1023

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Waelbroeck, H. (1990): Class. Quantum Grav. 7, 751; (1994): Phys. Rev. D 50, 4982

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Nelson, J., Regge, T. (1991): Phys. Lett. B 273, 213

    MathSciNet  ADS  Google Scholar 

  34. Welling, M. (1997): Class. Quant. Grav. 14, 3313; Matschull, H.-J. and Welling, M. (1998): Class. Quantum Grav. 15, 2981

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Bourdeau, M., Sorkin, S.D. (1992): Phys. Rev. D 45, 687

    Article  MathSciNet  ADS  Google Scholar 

  36. Deser, S., Jackiw, R. (1988): Commun. Math. Phys. 118, 495

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Menotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Italia

About this paper

Cite this paper

Menotti, P. (2002). Hamiltonian Structure of 2+1 Dimensional Gravity. In: Cianci, R., Collina, R., Francaviglia, M., Fré, P. (eds) Recent Developments in General Relativity, Genoa 2000. Springer, Milano. https://doi.org/10.1007/978-88-470-2101-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-88-470-2101-3_12

  • Publisher Name: Springer, Milano

  • Print ISBN: 978-88-470-0162-6

  • Online ISBN: 978-88-470-2101-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation