Robust Ergonomic Virtual Design

  • Chapter
Statistics for Innovation

Abstract

From the early development phases of a new industrial product, realistic simulations can be performed in a virtual environment to study the human-machine interaction. In a virtual lab, it is possible to perform experiments to assess the ergonomics of the new product using mannequins simulating the human body, and to deal with the problem of anthropometric variation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Barone, S., Curcio, A.: A computer-aided design-based system for posture analyses of motorcycles. J. Eng. Des. 15(6), 581–595 (2004)

    Article  Google Scholar 

  • Barone, S., Carbone, F., Lanzotti, A.: Progettazione del posto guida di una minicar basata su esperienza del designer e sperimentazione virtuale. In: Proc. Congreso Internacional Conjunto XVII INGEGRAF-XV ADM, Sevilla, Spain, ISBN 84-96377-41-5, 1-3 June (2005)

    Google Scholar 

  • Barone, S., Fittipaldi, F., Lanzotti, A.: Improving comfort of a new city vehicle by means of parameter design in virtual environment. In: Proc. 1st Annual Conf. European Network for Business and Industrial Statistics, Oslo, Norway, 17-18 Sept. (2001)

    Google Scholar 

  • Barone, S., Lanzotti, A.: Quality engineering approach to improve comfort of a new vehicle in virtual environment. Proceedings of the ASA, statistical computing section. American Statistical Association, Alexandria, VA (2002)

    Google Scholar 

  • Barone, S., Lanzotti, A.: On the treatment of anthropometrical noise factors in robust ergonomic design. In: Dall’Idea al Prodotto: La Rappresentazione Come Base per lo Sviluppo e l’Innovazione. Edizioni ETS, Pisa, pp 359–367, ISBN 978-884671841-9 (2007)

    Google Scholar 

  • Bowman, D.: Using digital human modeling in a virtual heavy vehicle development environment. In: Chaffin, D. (ed.): Proceedings of the Digital Human Modeling Conference. SAE, Munich, pp 343–353 (2001)

    Google Scholar 

  • Bubb, H., Estermann, S.: Influence of forces on comfort feeling in vehicles. SAE Paper 2000-01-2171 (2000)

    Google Scholar 

  • Colombo, G., Cugini, U.: Virtual humans and prototypes to evaluate ergonomics and safety. J. Eng. Design 16(2), 195–207 (2005)

    Article  Google Scholar 

  • D’Errico, J., Zaino, R.A.: Statistical tolerancing using a modification of Taguchi’s method. Technometrics 30(4), 397–405 (1988)

    Article  Google Scholar 

  • Dainoff, M.J.: Ergonomics of seating and chairs. In: Karwowski, W., Marras, W.S. (eds.): Occupational Ergonomics. CRC Press, Boca Raton, FL (2003)

    Google Scholar 

  • Geuss, H.: Optimizing the product design process by computer aided ergonomics. In: Landau, K. (ed.): Ergonomic Software Tools in Product and Workplace Design. Verlag ERGON GmbH, Stuttgart (2000)

    Google Scholar 

  • Hanson, L., Sperling, L.. Akselsson, R.: Preferred car driving posture using 3-D information. Int. J. Vehicle Design 42(1–2), 154–169 (2006)

    Article  Google Scholar 

  • Johansson, P., Chakhunashvili, A., Barone, S., Bergman, B.: Variation mode and effect analysis: a practical tool for quality improvement. Qual. Reliab. Eng. Int. 22(8), 865–876 (2006)

    Article  Google Scholar 

  • Kuhnt, S., Erdbrügge, M.: A strategy of robust parameter design for multiple responses. Stat. Model. 4, 249–264 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  • Lanzotti, A.: Adjustment design of a minicar driving seat. (unpublished research report). Department of Aerospace Engineering, University of Naples Federico II, Naples (2008)

    Google Scholar 

  • Lanzotti, A.: Robust design of car packaging in virtual environment. Int. J. Interact. Des. Manufact. 2(1), 39–46 (2008)

    Article  Google Scholar 

  • Lanzotti, A., Vanacore, A.: An efficient and easy discretizing method for the treatment of noise factors in robust design. Asian J. Qual. 8(3), ISSN 1598-2688 (2007)

    Google Scholar 

  • Levy, M.S., Wen, D.: BLINEX: A bounded asymmetric loss function with application to Bayesian estimation. Commun Stat Theory Methods 30, 147–153 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  • Maghsoodloo, S., Li, M.C.: Optimal asymmetric tolerance design. IIE Trans. 32, 1127–1137 (2000)

    Google Scholar 

  • Murphy, T.E.. Tsui, K.-L. Allen. J.K.: A review of robust design methods for multiple responses. Res. Eng. Des. 16, 118–132 (2005)

    Article  Google Scholar 

  • Park, S.H: Robust Design and Analysis for Quality Engineering. Chapman & Hall, London (1996)

    Google Scholar 

  • Phadke, S.M.: Quality Engineering Using Robust Design. Prentice-Hall, Upper Saddle River, NJ (1989)

    Google Scholar 

  • Pheasant, S.: Bodyspace: Anthropometry, Ergonomics and the Design of the Work. Taylor & Francis, London (1996)

    Google Scholar 

  • Pignatiello, J.: Strategies for robust multiresponse quality engineering. IIE Trans. 25(3), 5–15 (1993)

    Article  Google Scholar 

  • Porter, M., Gyi, D.E.: Exploring the optimum posture for driver comfort. Int. J. Vehicle Des. 19(3), 255–266 (1998)

    Google Scholar 

  • Reed, M.P., Flannagan, C.A.C.: Anthropometric and postural variability: limitations of the boundary manikin approach. SAE Paper 2000-01-2172 (2000)

    Google Scholar 

  • Reed, M.P., Manary, M.A., Flannagan. A.C., Schneider, W.L.: New concept in vehicle interior design using aspect. SAE Tech. Paper 1999-01-0967 (1999)

    Google Scholar 

  • Reed, M.P., Manary, M.A., Flannagan A.C., Schneider, W.L.: Comparison of methods for predicting automotive driver posture. SAE Tech. Paper 2000-01-2180 (2000)

    Google Scholar 

  • Robertson, S.A., Minter, A.: A study of some anthropometric characteristics of motorcycle riders. Appl. Ergonom. 27(4), 223–229 (1996)

    Article  Google Scholar 

  • Seo, H.S., Kwak, B.M.: Efficient statistical tolerance analysis for general distributions using three-point information. Int. J. Prod. Res. 40(4), 931–944 (2002)

    Article  MATH  Google Scholar 

  • Spiring. F.A., Yeung, A.S.: A general class of loss functions with industrial applications. J. Qual. Technol. 30(2), 152–162 (1998)

    Google Scholar 

  • Vogt, C., Mergl, C., Bubb, H.: Interior layout design of passenger vehicles with RAMSIS. Hum. Factors Ergonom. Manufact. 15(2), 197–212 (2005)

    Article  Google Scholar 

  • Taguchi, G.: System of Experimental Design. Kraus, New York (1987)

    Google Scholar 

  • Wu, C.F.J., Hamada, M.: Experiments. Wiley, New York (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer

About this chapter

Cite this chapter

Barone, S., Lanzotti, A. (2009). Robust Ergonomic Virtual Design. In: Erto, P. (eds) Statistics for Innovation. Springer, Milano. https://doi.org/10.1007/978-88-470-0815-1_3

Download citation

Publish with us

Policies and ethics

Navigation