A Few Historical Glimpses into the Interplay Between Algebra and Logic and Investigations into Gautama Algebras

  • Reference work entry
  • First Online:
Handbook of Logical Thought in India

Abstract

This chapter consists of two parts. PART I presents a few historical glimpses into the fascinating interplay between algebra and logic that essentially started in the middle of the nineteenth century with Boole’s work. It is mostly non-technical and highlights a few significant examples of this interplay. PART I includes a brief discussion of Boole’s algebra of logic, Frege’s mathematical logic, and the eventual meeting of Frege’s tradition with Boole’s tradition in Tarski’s papers (in the early 1930s). It also discusses Rasiowa’s implicative logics and Blok and Pigozzi’s algebraizable logics, and provides examples – some known and some new. It concludes with a discussion of the impact, on logic, of algebra arising from rough set theory.

PART II further illustrates the interplay between algebra and logic. More precisely, we define a new equational class of algebras called “Gautama algebras.” They are named in honor and memory of the two founders of Indian Logic – Medhatithi Gautama and Akshapada Gautama. The variety \( \mathbbm{G} \) of Gautama algebras is a common generalization of the varieties of regular double Stone algebras and regular Kleene Stone algebras, both of which grew out of Boolean algebras, which, in turn, arose from Boole’s algebra of logic. We provide an explicit description of subdirectly irreducible Gautama algebras and the lattice of subvarieties of the variety of Gautama algebras. We also introduce another variety \( \mathbbm{GH} \) of Gautama Heyting algebras and show that it is term-equivalent to the variety of Gautama algebras. We then define new propositional logics called GAUTAMA, RDBLSt, and RKLSt and show them to be algebraizable (in the sense of Blok and Pigozzi), with the varieties of Gautama algebras, regular double Stone algebras and regular Kleene Stone algebras, respectively, as their equivalent algebraic semantics. The chapter concludes with some open problems for further research and also with an extensive bibliography.

2010 Mathematics Subject Classification: Primary: 03G10, 03G27, 03B50, 03G25, 06D20, 06D15; Secondary: 08B26, 08B15, 06D30

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 589.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 649.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    PART I is an expanded version of my lectures given at the silver jubilee celebration of Calcutta Logic Circle at Kolkata, India, on October 13, 2013 and at IIT, Guwahati, India, on April 28, 2017. PART II is an expanded version of my talk at IIT, Kanpur, India, on April 9, 2021.

References

  • Adams, M.E., H.P. Sankappanavar, and J. Vaz de Carvalho. 2019. Regular double p-algebras. Mathematica Slovaca 69 (1): 15–34.

    Article  Google Scholar 

  • Adams, M.E., H.P. Sankappanavar, and J. Vaz de Carvalho. 2020. Varieties of regular pseudocomplemented De Morgan algebras. Order 37 (3): 529–557.

    Article  Google Scholar 

  • Ahmed, T.S. 2020. A brief history of Tarskian algebraic logic with new perspectives and innovations. Bollettino dell'Unione Matematica Italiana 13 (3): 381–416.

    Article  Google Scholar 

  • Anderson, A.R., and N.D. Belnap Jr. 1975a. Entailment. Volume I: The logic of relevance and necessity, with contributions by J. Michael Dunn and Robert K. Meyer, and further contributions by John R. Chidgey, J. Alberto Coffa, Dorothy L. Grover, Bas van Fraassen, Hugues LeBlanc, Storrs McCall, Zane Parks, Garrel Pottinger, Richard Routley, Alasdair Urquhart and Robert G. Wolf. Princeton University Press, Princeton, N. J.-London.

    Google Scholar 

  • Anderson, A.R., and N.D. Belnap Jr. 1975b. Entailment. Volume II: The logic of relevance and necessity, with contributions by J. Michael Dunn and Robert K. Meyer, and further contributions by John R. Chidgey, J. Alberto Coffa, Dorothy L. Grover, Bas van Fraassen, Hugues LeBlanc, Storrs McCall, Zane Parks, Garrel Pottinger, Richard Routley, Alasdair Urquhart and Robert G. Wolf. Princeton University Press, Princeton, NJ/London.

    Google Scholar 

  • Andréka, H., T. Gergely, and I. Németi. 1977. On universal algebraic constructions of logics. Studia Logica 36 (1–2): 9–47.

    Article  Google Scholar 

  • Andréka, H., B. Jónsson, and I. Németi. 1991. Free algebras in discriminator varieties. Algebra Universalis 28 (3): 401–447.

    Article  Google Scholar 

  • Andréka, H., A. Kurucz, I. Németi, and I. Sain. 2000. Applying algebraic logic. A general methodology. Preprint Math Inst., Budapest.

    Google Scholar 

  • Anellis, I.H., and N.R. Houser. 1991. Nineteenth-century roots of algebraic logic and universal algebra. In Algebraic logic (Budapest, 1988), 54:1–36. Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam.

    Google Scholar 

  • Babyonyshev, S.V. 2003. Fully Fregean logics. Reports on Mathematical Logic 37: 59–77.

    Google Scholar 

  • Badesa, C. 2004. The Birth of Model Theory: Lowenheim’s Theorem in the Frame of the Theory of Relatives. Princeton University Press.

    Google Scholar 

  • Balbes, R., and P. Dwinger. 1974. Distributive lattices. Columbia, MO: University of Missouri Press.

    Google Scholar 

  • Ballarin, R. 2021. Modern Origins of Modal Logic. In: The Stanford Encyclopedia of Philosophy (Fall 2021 Edition), Edward N. Zalta (ed.)

    Google Scholar 

  • Banerjee, M. 2021. Algebraic logic and rough set theory. In Handbook of logical thought in India. Springer.

    Google Scholar 

  • Banerjee, M., and M.K. Chakraborty. 2004. Algebras from rough sets. In Rough-neural computing. Cognitive technologies, ed. S.K. Pal, L. Polkowski, and A. Skowron, 157–184. Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bartol, W., E. Orlowska, and A. Skowron. 1995. Helena Rasiowa, 1917–1994. Modern Logic 5 (3): 231–247.

    Google Scholar 

  • Belikov, A. 2021. Peirce’s triadic logic and its (overlooked) connexive expansion. Logic and Logical Philosophy: 1–25.

    Google Scholar 

  • Bell, J., and A. Slomson. 1969. Models and ultra products: An introduction. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Bergman, C. 2011. Universal Algebra: Fundamentals and Selected Topics. Taylor & Francis/CRC.

    Google Scholar 

  • Bergman, C.H., R.D. Maddux, and D.L. Pigozzi, eds. 1990. Algebraic logic and universal algebra in computer science, Lecture notes in computer science. Vol. 425. Berlin: Springer.

    Google Scholar 

  • Bergmann, M. 2008. An introduction to many-valued and fuzzy logic. Semantics, algebras, and derivation systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Bernays, Paul. 1918. Beiträge zur axiomatischen Behandlung des Logik-Kalkuls. David Hilbert’s Lectures on the Foundations of Arithmetic and Logic 1917–1933.

    Google Scholar 

  • Bernays, P. 1926. Axiomatische Untersuchung des Aussagen-Kalkuls der “Principia Mathematica”. Math. Z. 25 (1): 305–320.

    Google Scholar 

  • Beth, E.W. 1947. Hundred years of symbolic logic a retrospect on the occasion of the boole de morgan centenary. Dialectica: 331–346.

    Google Scholar 

  • Beth, E. 1965. Mathematical thought. In An introduction to the philosophy of mathematics. Dordrecht: D. Reidel Publishing Co.

    Google Scholar 

  • Beth, E.W. 1948. The origin and growth of symbolic logic. Synthese 6: 268–274.

    Article  Google Scholar 

  • Béziau, Jean-Yves, ed. 2012. Universal logic: An anthology, from Paul Hertz to Dov Gabbay. Basel, Switzreland: Birkhäuser.

    Google Scholar 

  • Bialynicki-Birula, A., and H. Rasiowa. 1957. On the representation of quasi-Boolean algebras. Bulletin of the Polish Academy of Sciences Cl III 5: 259–261, XXII.

    Google Scholar 

  • Birkhoff, G. 1933. On the combination of subalgebras. In Mathematical proceedings of the Cambridge philosophical society, vol. 29, 441–464. 4. Cambridge University Press.

    Google Scholar 

  • Birkhoff, G. 1935. On the structure of abstract algebras. Proceedings of the Cambridge Philosophical Society 29: 433–454.

    Article  Google Scholar 

  • Birkhoff, G. 1944. Subdirect unions in universal algebra. Bulletin of the American Mathematical Society 50: 764–768.

    Article  Google Scholar 

  • Birkhoff, G. 1946. Universal algebra. In Proc. First Canadian Math. Congress, Montreal, 1945, 310–326. Toronto: University of Toronto Press.

    Google Scholar 

  • Birkhoff, G. 1948. Lattice theory, American mathematical society colloquium publications. Vol. 25. New York, NY: American Mathematical Society.

    Google Scholar 

  • Birkhoff, G. 1973. Current trends in algebra. American Mathematical Monthly 80: 760–782.

    Article  Google Scholar 

  • Birkhoff, G.1987. Selected papers on algebra and topology. Contemporary Mathematicians. Birkhäuser Boston, Inc., Boston, MA

    Google Scholar 

  • Blackburn, P., J. van Benthem, and F. Wolter, eds. 2006. Handbook of Modal Logic. Elsevier, Amsterdam.

    Google Scholar 

  • Blackburn, P., M. de Rijke, and Y. Venema. 2001. Modal logic, Cambridge tracts in theoretical computer science. Vol. 53. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Blok, W.J., and E. Hoogland. 2006. The Beth property in algebraic logic. Studia Logica 83 (1–3): 49–90.

    Article  Google Scholar 

  • Blok, W.J., and B. Jónsson. 2006. Equivalence of consequence operations. With a preface by Jónsson. Studia Logica 83 (1–3): 91–110.

    Article  Google Scholar 

  • Blok, W.J., and D. Pigozzi. 1982. On the structure of varieties with equationally definable principal congruences. III. Algebra Universalis 15 (2): 195–227.

    Article  Google Scholar 

  • Blok, W.J., and D. Pigozzi. 1986. Protoalgebraic logics. Studia Logica 45 (4): 337–369.

    Article  Google Scholar 

  • Blok, W.J., and D. Pigozzi. 1988. Alfred Tarski’s work on general metamathematics. The Journal of Symbolic Logic 53 (1): 36–50.

    Article  Google Scholar 

  • Blok, W.J., and D. Pigozzi. 1989a. Algebraizable logics. Memoirs of the American Mathematical Society 77 (396).

    Google Scholar 

  • Blok, W.J., and D. Pigozzi. 1989b. The deduction theorem in algebraic logic. Preprint.

    Google Scholar 

  • Blok, W.J., and D. Pigozzi, eds. 1991a. Algebraic logic. 365–622. Studia Logica 50 (1991), no. 3–4. Ossolineum [The Polish Academy of Sciences Press], Wroclaw.

    Google Scholar 

  • Blok, W.J., and D. Pigozzi. 1991b. Local deduction theorems in algebraic logic. In Algebraic logic (Budapest, 1988), vol. 54, 75–109. Colloq. Math. Soc. János Bolyai. North-Holland, Amsterdam.

    Google Scholar 

  • Blok, W.J., and D. Pigozzi. 1992. Algebraic semantics for universal Horn logic without equality. In Universal algebra and quasigroup theory (Jadwisin, 1989), vol. 19, 1–56. Res. Exp. Math. Heldermann, Berlin.

    Google Scholar 

  • Blok, W.J., and D. Pigozzi. 1994. On the structure of varieties with equationally definable principal congruences IV. Algebra universalis 31 (1): 1–35.

    Article  Google Scholar 

  • Blok, W. J., and D. Pigozzi. 1990. Lectures in algebraic logic. Unpublished manuscript.

    Google Scholar 

  • Blok, W.J., and J.G. Raftery. 2008. Assertionally equivalent quasivarieties. International Journal of Algebra and Computation 18 (04): 589–681.

    Article  Google Scholar 

  • Blok, W.J., and J. Rebagliato. 2003. Algebraic semantics for deductive systems, 74:153–180. 1–2. Abstract algebraic logic, Part II (Barcelona, 1997).

    Google Scholar 

  • Bloom, S. 1975. Some theorems on structural consequence operations. Studia Logica 34: 1–9.

    Article  Google Scholar 

  • Bloom, S.L., Brown, D.J. and Suszko, R. 1970. Some theorems on abstract logics. Algebra and Logic 9: 165–168.

    Google Scholar 

  • Bocheński, I. 1970. A history of formal logic. New York: Chelsea Publishing Co.

    Google Scholar 

  • Bolzano, B. 1978. Grundlegung der Logik. Second. Vol. 259. Philosophische Bibliothek [Philosophical Library]. Selected paragraphs from it Wissenschaftslehre, Band I und II, Edited and with an introduction by Friedrich Kambartel. Felix Meiner Verlag, Hamburg.

    Google Scholar 

  • Bolzano, B. 1987. Bernard Bolzano—Gesamtausgabe. Reihe I. Schriften. Band 11. Teil 2. Wissenschaftslehre. §§46–90. [Theory of science. Sections 46–90], Edited and with an introduction by Jan Berg. Friedrich Frommann Verlag Günther Holzboog GmbH & Co., Stuttgart.

    Google Scholar 

  • Bolzano, B. 1985. Bolzano’s Gesamtausgabe. 11–14.

    Google Scholar 

  • Boole, G. 1847. The mathematical analysis of logic. Being an essay toward a calculus of deductive reasoning. Barclay\Cambridge: Macmillan.

    Google Scholar 

  • Boole, G. 1848. The calculus of logic. Cambridge and Dublin Mathematical Journal 3: 183–198.

    Google Scholar 

  • Boole, G. 1854. An investigation of the laws of thought on which are founded the mathematical theories of logic and probabilities. London: Macmillan.

    Book  Google Scholar 

  • Boole, G. 1997, Selected Manuscripts on Logic and its Philosophy (Science Networks Historical Studies: Volume 20), edited by Ivor Grattan-Guinness and Gérard Bornet. Basel, Boston, and Berlin: Birkhäuser Verlag.

    Google Scholar 

  • Brady, G. 2000. From Peirce to Skolem, Studies in the history and philosophy of mathematics. A neglected chapter in the history of logic. Vol. 4. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Brouwer, L.E.J. 1913. Intuitionism and formalism. Bulletin of the American Mathematical Society: 81–96.

    Google Scholar 

  • Brown, F.M. 2009. George Boole’s deductive system. Notre Dame Journal of Formal Logic 50 (3): 303–330.

    Article  Google Scholar 

  • Brown, S.L., and R. Suszko. 1973. Abstract logics Dissertationes Mathematicae. Rozprawy Matematyczne: 303–330.

    Google Scholar 

  • Burris, S. 1995. Computers and universal algebra: Some directions. Algebra Universalis 34 (1): 61–71.

    Article  Google Scholar 

  • Burris, S. 1998. Logic for mathematics and computer science. Upper Saddle River, N.J: Prentice Hall.

    Google Scholar 

  • Burris, S. 2015. George Boole and Boolean algebra. European Mathematical Society. Newsletter, no. 98, 27–31.

    Google Scholar 

  • Burris, S. 2018. George Boole, edited by Edward N. Zalta. The Stanford Encyclopedia of Philosophy (Summer 2018 Edition).

    Google Scholar 

  • Burris, S. 2019. Annotated version of Boole’s algebra of logic 1847 as presented in his booklet: The mathematical analysis of logic. Being an essay towards a calculus of deductive reasoning. Preprint.

    Google Scholar 

  • Burris, S., and J. Legris. 2021. The algebra of logic tradition, edited by Edward N. Zalta. The Stanford Encyclopedia of Philosophy (Spring 2021 Edition).

    Google Scholar 

  • Burris, S., and H.P. Sankappanavar. 1981. A course in universal algebra, Graduate texts in mathematics. Vol. 78. New York, Heidelberg, Berlin: Springer. Millennium Edition is freely available online as a PDF file at www.math.uwaterloo.ca/~snburris.

  • Burris, S., and H.P. Sankappanavar. 2013. The Horn theory of Boole’s partial algebras. The Bulletin of Symbolic Logic 19 (1): 97–105.

    Article  Google Scholar 

  • Burris, S., and H.P. Sankappanavar. 2014a. Boole’s principles of symbolical reasoning. Ar**v:1412.2953v1 [math.LO].

    Google Scholar 

  • Burris, S., and H.P. Sankappanavar. 2014b. Boole’s method I. A modern version. Ar**v:1404.0784v1 [math.LO].

    Google Scholar 

  • Burris, S., and H. P. Sankappanavar. 2014c. Boole’s method II. The original version. Preprint.

    Google Scholar 

  • Burton, D.M. 1985. The history of mathematics. An introduction. Boston, MA: Allyn-and-Bacon, Inc.

    Google Scholar 

  • Cajori, F. 1999. A history of mathematics. Vol. 303. American Mathematical Soc 14 (4): 495–502.

    Google Scholar 

  • Caleiro, C., R. Gonçalves, and Martins M. 2009. Behavioral algebraization of logics. Studia Logica 91 (1): 63–111.

    Google Scholar 

  • Celani, S., and R. Jansana. 2001. A closer look at some subintuitionistic logics. Notre Dame Journal of Formal Logic 42:225–255.

    Google Scholar 

  • Chagrov, A., and M. Zakharyaschev. 1997. Modal logic, Oxford Logic Guides. Vol. 35. New York: Oxford Science Publications. The Clarendon Press.

    Google Scholar 

  • Chagrov, A., and M. Zakharyashchev. 1991. The disjunction property of intermediate propositional logics. Studia Logica 50 (2): 189–216.

    Article  Google Scholar 

  • Chang, C.C. 1958. Algebraic analysis of many valued logics. Transactions of the American Mathematical Society 88: 467–490. ISSN: 0002-9947.

    Article  Google Scholar 

  • Chang, C.C., and H.J. Keisler. 1990. Model theory, Studies in logic and the foundations of mathematics. Vol. 73. 3rd ed. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Chellas, B.F. 1980. Modal logic. An introduction. New York: Cambridge University Press.

    Book  Google Scholar 

  • Church, A. 1956. Introduction to mathematical logic. Vol. I. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Cignoli, R., I. D’Ottaviano, and D. Mundici. 2000. Algebraic foundations of many-valued reasoning, Trends in logic—Studia logica library. Vol. 7. Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Cintula, P. 2006. Weakly implicative (fuzzy) logics. I. Basic properties. Archive for Mathematical Logic 45 (6): 673–704.

    Article  Google Scholar 

  • Cintula, P., and C. Noguera. 2011. Chapter: A general framework for mathematical fuzzy logic. In Handbook of mathematical fuzzy logic. Volume 1, vol. 37, 103–207. London: Stud. Log. (Lond.) Coll. Publ.

    Google Scholar 

  • Citkin, A., and A. Muravitsky. 2021. Consequence relations. An introduction to the Tarski- Lindenbaum method. Ar**v:2106.10966.

    Google Scholar 

  • Clark, D.M., and B.A. Davey. 1998. Natural dualities for the working algebraist. Cambridge University Press.

    Google Scholar 

  • Cohn, P. 1981. Universal algebra. 2nd ed. Dordrecht-Boston, MA: D. Reidel Publishing Co.

    Book  Google Scholar 

  • Comer, S. 1991. An algebraic approach to the approximation of information. Fundamenta Mathematicae 14(4):495–502.

    Google Scholar 

  • Cornejo, J. M., and H. P. Sankappanavar. 2022. A logic for dually hemimorphic semi-heyting algebras and axiomatic extensions. ar**v: 1908.02403v2 [math.LO] 8 Feb 2022.

    Google Scholar 

  • Cornejo, J.M. 2011. Semi-intuitionistic logic. Studia Logica 98 (1–2): 9–25.

    Article  Google Scholar 

  • Cornejo, J.M., and I. Viglizzo. 2015. On some semi-intuitionistic logics. Studia Logica 103 (2): 303–344.

    Article  Google Scholar 

  • Cornejo, J.M., and I. Viglizzo. 2018a. Semi-intuitionistic logic with strong negation. Studia Logica 106 (2): 281–293.

    Article  Google Scholar 

  • Cornejo, J.M., and I. Viglizzo. 2018b. Semi-Nelson algebras. Order 35 (1): 23–45.

    Article  Google Scholar 

  • Couturat, L. 1980. L’algèbre de la logique. 2nd ed. Paris: Librairie Scientifique et Technique Albert Blanchard.

    Google Scholar 

  • Czelakowski, J. 1980. Reduced products of logical matrices. Studia Logica 39 (1): 19–43.

    Article  Google Scholar 

  • Czelakowski, J. 1981. Equivalential logics. I and II. Studia Logica 40 (4): 227–236, 355–372.

    Article  Google Scholar 

  • Czelakowski, J. 2001. Protoalgebraic logics, Trends in Logic—Studia Logica Library. Vol. 10. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Czelakowski, J. 2003. The Suszko operator. Part I, 74:181–231. 1-2. Abstract algebraic logic, Part II (Barcelona, 1997).

    Google Scholar 

  • Czelakowski, J., ed. 2018. Don Pigozzi on abstract algebraic logic, universal algebra, and computer science, Outstanding contributions to logic. Vol. 16. Springer.

    Google Scholar 

  • Czelakowski, J., and R. Jansana. 2000. Weakly algebraizable logics. The Journal of Symbolic Logic 65 (2): 641–668.

    Article  Google Scholar 

  • Czelakowski, J., and D. Pigozzi. 1999. Amalgamation and interpolation in abstract algebraic logic. In Models, algebras, and proofs (Bogotá, 1995), vol. 203, 187–265. Lecture Notes in Pure and Appl. Math. New York: Dekker.

    Google Scholar 

  • Czelakowski, J., and D. Pigozzi. 2004a. Fregean logics. Annals of Pure and Applied Logic 127 (1–3): 17–76.

    Article  Google Scholar 

  • Czelakowski, J., and D. Pigozzi. 2004b. Fregean logics with the multiterm deduction theorem and their algebraization. Studia Logica 78 (1–2): 171–212.

    Article  Google Scholar 

  • Davey, B. A. and H. A. Priestley. 2002. Introduction to lattices and Order. Second Edition. Cambridge University Press, Cambridge.

    Google Scholar 

  • De Morgan, A. 1839. On the foundation of algebra. Transactions of the Cambridge Philosophical Society VII:174–187. https://www.worldcat.org/title/treatise-on-algebra/oclc/1246996.

  • De Morgan, A. 1841. On the foundation of algebra. Transactions of the Cambridge Philosophical Society VII (II): 287–300.

    Google Scholar 

  • De Morgan, A. 1847. Formal Logic: or, the calculus of inference, Necessary and Probable. Taylor / Watson, London. Reprinted in London by The Open Court Company, 1926.

    Google Scholar 

  • De Morgan, A. 1966. “On the syllogism” and other logical writings. Edited, with an introduction, by Peter Heath. Yale University Press, New Haven, CT.

    Google Scholar 

  • Dedekind, R. 1900. Über die von drei Moduln erzeugte Dualgruppe gemeinsamen. Reprinted in Gesammelte mathematische Werke, Vol. 2, pp. 236–271, Chelsea, New York, 1968, Math. Annalen 53:371–403.

    Google Scholar 

  • Dellunde,P. 1995. A finitary 1-equivalential logic not finitely equivalential. Bulletin of the Section of Logic 24 (3): 120–122.

    Google Scholar 

  • Descartes, R. 1637. La géométrie: An appendix in: Discours de la méthode, edited by A Hermann.

    Google Scholar 

  • Descartes, R. 1897. Oeuvres de Descartes. Edited by Charles Adam and Paul Tannery. Paris.

    Google Scholar 

  • Dipert, R.R. 1984. Peirce, Frege, the logic of relations, and Church’s theorem. History and Philosophy of Logic 5 (1): 49–66.

    Article  Google Scholar 

  • Euler, L. 1911. “Opera Omnia”, collected works of Euler. The Euler Commission of the Swiss Academy.

    Google Scholar 

  • Ewald, W., ed. 1996. From Kant to Hilbert: A source book in the foundations of mathematics. Vol. I, II. Oxford Science Publications. Compiled, edited and with introductions by William Ewald. Oxford University Press, New York.

    Google Scholar 

  • Feferman, A.B., and S. Feferman. 2004. Alfred Tarski. Life and Logic. Cambridge: Cambridge University Press.

    Google Scholar 

  • Fisch, M., and A. Turquette. 1966. Peirce’s triadic logic. Transactions of the Charles S Peirce Society 2: 71–85.

    Google Scholar 

  • Fitting, M.C. 1969. Intuitionistic logic, model theory and forcing, Studies in Logic and the Foundations of Mathematics. Amsterdam-London: North-Holland Publishing Co.

    Google Scholar 

  • Fitting, M.C. 1999. Foreword: A tribute to Professor Helena Rasiowa. In Logic at work, vol. 24. Heidelberg: Stud. Fuzziness Soft Comput. Physica.

    Google Scholar 

  • Font, J.M. 1997. Belnap’s four-valued logic and De Morgan lattices. Logic Journal of IGPL 5 (3): 1–29.

    Article  Google Scholar 

  • Font, J.M. 1999. On the contributions of Helena Rasiowa to mathematical logic. Multi-Valued Logarithm 4 (3): 159–179.

    Google Scholar 

  • Font, J.M. 2003. An abstract algebraic logic view of some multiple-valued logics. In Beyond two: Theory and applications of multiple-valued logic, vol. 114, 25–57. Heidelberg: Stud. Fuzziness Soft Comput. Physica.

    Chapter  Google Scholar 

  • Font, J.M. 2006. Beyond Rasiowa’s algebraic approach to non-classical logics. Studia Logica 82 (2): 179–209.

    Article  Google Scholar 

  • Font, J.M. 2016. Abstract algebraic logic. An introductory textbook, Studies in logic (London). Mathematical logic and foundations. Vol. 60. London: College Publications.

    Google Scholar 

  • Font, J.M., F. Guzmán, and V. Verdú. 1991. Characterization of the reduced matrices for the conjunction-disjunction fragment of classical logic. Bulletin of the Section of Logic 20 (3/4): 124–128.

    Google Scholar 

  • Font, J.M., R. Jansana, and D. Pigozzi, eds. 2000. Abstract algebraic logic. I. i–ii and 1–153. Papers from the workshop held in Barcelona, July 1–5, 1997, Studia Logica 65 (2000), no. 1. Springer, Dordrecht.

    Google Scholar 

  • Font, J. M., R. Jansana, and D. Pigozzi. 2003. A survey of abstract algebraic logic. Studia Logica (Special issue on abstract algebraic logic, part II) 74:13–97.@

    Google Scholar 

  • Font, J. M., R. Jansana, and D. Pigozzi. 2006. On the closure properties of the class of full g-models of a deductive system. Studia Logica 83: 215–278.

    Google Scholar 

  • Font, J.M., and D. Pigozzi. 2009. Update to “a survey of abstract algebraic logic”. Studia Logica 91 (1): 125–130.

    Article  Google Scholar 

  • Font, J.M., and V. Verdú. 1991. Algebraic logic for classical conjunction and disjunction, 50:391–419. 3–4. Algebraic logic.

    Google Scholar 

  • Font, J. M., and Jansana R. 2009. A general algebraic semantics for sentential logics. Second Edition. Lecture Notes in Logic, Vol. 7. Association for Symbolic Logic.

    Google Scholar 

  • Frege, G. 1879. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Dendens. Halle.

    Google Scholar 

  • Frege, G. 1884. Die Grundlagen der Arithmetik. Eine logisch mathematische Untersuchung über den Begriff der Zahl. English translation 1950 by J. L. Austin. Philosophical Library, New York, N. Y.

    Google Scholar 

  • Gabbay, D., and F. Guenthner, eds. 1984. Handbook of philosophical logic. Vol. II. Vol. 165. Synthese Library. Extensions of classical logic. D. Reidel Publishing Co., Dordrecht.

    Google Scholar 

  • Gabbay, D. M., and J. Woods, eds. 2009. Logic from Russell to Church. Vol. 5. Handbook of the History of Logic. North-Holland, Amsterdam.

    Google Scholar 

  • Galatos, N., P. Jipsen, T. Kowalski, and H. Ono. 2007. Residuated lattices: An algebraic glimpse at substructural logics, Studies in Logic and the Foundations of Mathematics. Vol. 151. Amsterdam: Elsevier B. V.

    Google Scholar 

  • Garrido, Á., and U. Wybraniec-Skardowska, eds. 2018. The Lvov-Warsaw school. Past and Present, Studies in Universal Logic. Cham: Birkhäuser/Springer.

    Google Scholar 

  • Gehrke, M., and E. Walker. 1992. On the structure of rough sets. Bulletin of the Polish Academy of Sciences, Mathematics 40: 235–245.

    Google Scholar 

  • Givant, S. 1986. Bibliography of Alfred Tarski. Journal of Symbolic Logic 51: 913–941.

    Article  Google Scholar 

  • Glivenko, V. 1928. Sur la logique de M. Brouwer. Académie Royale de Belgique, Bulletin 14: 225–228.

    Google Scholar 

  • Glivenko, V. 1929. Sur quelques points de la logique de M. Brouwer. Bulletins de la classe des sciences 15 (5): 183–188.

    Google Scholar 

  • Gödel, K. 1933. Eine Interpretation des Intuitionistichen Aussagenkalküls, Ergebnisse Math Colloq.

    Google Scholar 

  • Gödel, K. 1932. Zum intuitionistischen aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien 69.

    Google Scholar 

  • Gödel, K. 1986. Collected works. Vol. I. Publications 1929–1936, Edited and with a preface by Solomon Feferman. The Clarendon Press, Oxford University Press, New York.

    Google Scholar 

  • Goldblatt, R.I. 1976a. Metamathematics of modal logic. II. Reports on Mathematical Logic 7: 21–52.

    Google Scholar 

  • Goldblatt, R. I. 1976b. Metamathematics of modal logic. II. Rep. Math. Logic, no. 7: 21–52.

    Google Scholar 

  • Goldblatt, R.I. 1989. Varieties of complex algebras. Ann. Pure Appl. Logic 44 (3): 173–242.

    Article  Google Scholar 

  • Goldblatt, R.I. 1995. Elementary generation and canonicity for varieties of Boolean algebras with operators. Algebra universalis 34 (4): 551–607.

    Article  Google Scholar 

  • Goldblatt, R. I. 2006. “Mathematical modal logic:a view of its evolution”. Handbook of the History of Logic 7:1–98.

    Google Scholar 

  • Gorbunov, V.A. 1998. Algebraic theory of quasivarieties. Siberian School of Algebra and Logic. Translated from the Russian. Consultants Bureau, New York.

    Google Scholar 

  • Grattan-Guinness, I. 2000. The search for mathematical roots, 1870–1940. Princeton Paperbacks. Logics, set theories and the foundations of mathematics from Cantor through Russell to Gödel. Princeton University Press, Princeton, NJ.

    Google Scholar 

  • Grätzer, G. 2008. Universal algebra. 2nd ed. Springer.

    Book  Google Scholar 

  • Grätzer, G., and E.T. Schmidt. 1957. On a problem of M. H. Stone. Acta Mathematica Academiae Scientiarum Hungaricae 8: 455–460.

    Article  Google Scholar 

  • Gregory, D.F. 1840. On the real nature of symbolical algebra. Transactions of the Royal Society of Edinburgh 14: 208–216.

    Google Scholar 

  • Haaparanta, L., ed. 2009. The development of modern logic. Oxford: Oxford University Press.

    Google Scholar 

  • Hailperin, T. 1981. Boole’s algebra isn’t Boolean algebra. Mathematics Magazine 54 (4): 172–184.

    Article  Google Scholar 

  • Hailperin, T. 1986. Boole’s logic and probability. Studies in logic and the foundations of mathematics, A critical exposition from the standpoint of contemporary algebra, logic and probability theory. Vol. 85. Amsterdam\New York\Oxford: North-Holland Publishing Co.

    Google Scholar 

  • Hailperin, T. 2004. Algebraical Logic 1685–1900. In Handbook of the History of Logic, edited by D. M. Gabbay and J. Woods, vol. 3. Elsevier, Amsterdam.

    Google Scholar 

  • Hájek, P. 1998. Metamathematics of fuzzy logic, Trends in logic—Studia logica library. Vol. 4. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Halmos, P., and S. Givant. 1998. Logic as algebra, The Dolciani Mathematical Expositions. Vol. 21. Washington, DC: Mathematical Association of America.

    Book  Google Scholar 

  • Halmos, P.R. 1956. Algebraic logic. I. Monadic Boolean algebras. Compositio Math. 12: 217–249.

    Google Scholar 

  • Halmos, P.R. 1962. Algebraic logic. New York: Chelsea Publishing Co.

    Google Scholar 

  • van Heijenoort, J. 1967. From Frege to Gödel. A source book in mathematical logic, 1879–1931. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • van Heijenoort, J., ed. 2002. From Frege to Gödel. A source book in mathematical logic, 1879–1931, Reprint of the third printing of the 1967 original [MR0209111 (35 #15)]. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Hendricks, V. F., and J. Malinowski, eds. 2003. Trends in logic. Vol. 21. Trends in Logic—Studia Logica Library. 50 years of Studia Logica, Papers from the conferences held in Jablonna, October 4–6 and in Copenhagen, November 20–22, 2003. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Henkin, L. 1950. An algebraic characterization of quantifiers. Fundamenta Mathematicae 37:63–74.

    Google Scholar 

  • Henkin, L., J. D. Monk, and A. Tarski. 1971. Cylindric algebras. Part I. Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Henkin, L., J.D. Monk, and A. Tarski. 1985. Cylindric algebras. Part II, Studies in logic and the foundations of mathematics. Vol. 115. Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  • Henkin, L., J.D. Monk, A. Tarski, H. Andréka, and I. Németi. 1981. Cylindric set algebras. In Lecture notes in mathematics, vol. 883. Berlin\New York: Springer-Verlag.

    Google Scholar 

  • Hermes, H. 1951. Zur Theorie der aussagenlogischen Matrizen. (German). Mathematische Zeitschrift 53: 414–418.

    Article  Google Scholar 

  • Herrmann, B. 1993. Equivalential logics and definability of truth. 61 pp. Ph.D. Dissertation, Freie Universität.

    Google Scholar 

  • Herrmann, B. 1996. Equivalential and algebraizable logics. Studia Logica 57: 419–436.

    Google Scholar 

  • Herrmann, B. 1997. Characterizing equivalential and algebraizable logics by the Leibniz operator. Studia Logica 58: 305–323.

    Google Scholar 

  • Heyting, A. 1930. Die formalen Regeln der intuitionistichen Mathematik: aufzeichnung 2. Sitzungsberichten der preussischen Akademie der Wissenschaften.

    Google Scholar 

  • Hilbert, D. 1899. Ueber die Grundlagen der Geometrie. Mathematische Annalen 56 (3): 381–422.

    Article  Google Scholar 

  • Hilbert, D. 1905. Verhandlungen des dritten internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904.

    Google Scholar 

  • Hilbert, D. 1917. Axiomatisches Denken. Mathematische Annalen 78 (1): 405–415.

    Article  Google Scholar 

  • Hilbert, D. 1930. Probleme der Grundlegung der Mathematik. Mathematische Annalen 102 (1): 1–9.

    Google Scholar 

  • Hilbert, D. 2013. David Hilbert’s lectures on the foundations of arithmetic and logic, 1917–1933. Vol. 3. David Hilbert’s Lectures on the Foundations of Mathematics and Physics 1891–1933. Edited by William Ewald, Wilfried Sieg and Michael Hallett, in collaboration with Ulrich Majer and Dirk Schlimm. Springer-Verlag, Berlin.

    Google Scholar 

  • Hilbert, D., and W. Ackermann. 1959. Grundzüge der theoretischen Logik. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XXVII. 3d ed. Springer-Verlag, Berlin-Göttingen-Heidelberg.

    Google Scholar 

  • Hilbert, D., and P. Bernays. 1934. Grundlagen der Mathematik. Vol. I. Ann Arbor, MI: J. W. Edwards.

    Google Scholar 

  • Hilbert, D., and P. Bernays. 1939. Prinzipien der Mathematik II.

    Google Scholar 

  • Hofmann, J.E. 1957. The history of mathematics. New York: Philosophical Library.

    Google Scholar 

  • Hoogland, E. 2000. Algebraic characterizations of various Beth definability properties. Abstract algebraic logic, I (Barcelona, 1997). Studia Logica 65 (1): 91–112.

    Article  Google Scholar 

  • Hughes, G.E., and M.J. Cresswell. 1984. A companion to modal logic. London: Methuen & Co., Ltd.

    Google Scholar 

  • Huntington, E.V. 1933. New sets of independent postulates for the algebra of logic, with special reference to Whitehead and Russell’s Principia mathematica” [Trans. Amer. Math. Soc. 35 (1933), no. 1, 274–304; 1501684]. Transactions of the American Mathematical Society. 35 (2): 274–304.

    Google Scholar 

  • Ingalls, D. H. 1951. Materials for the study of Navya-Nyaya logic. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Jansana, R. 2004. Selfextensional logics in abstract algebraic logic: A brief survey. In Aspects of universal logic, vol. 17, 32–65. Neuchâtel, Neuchâtel: Travaux Log. Univ.

    Google Scholar 

  • Jansana, R. 2016. Algebraic propositional logic, edited by Edward N. Zalta. The Stanford Encyclopedia of Philosophy (Winter 2016 Edition).

    Google Scholar 

  • Jevons, W.S. 1958. The principles of science: A treatise on logic and scientific method. New York: Dover Publications, Inc.

    Google Scholar 

  • Jevons, W.S. 1864. Pure logic; or, the logic of quality apart from quantity. with Remarks on Boole’s System and on the Relation of Logic and Mathematics, London: Edward Stanford. Reprinted 1971 in Pure Logic and Other Minor Works, R. Adamson and H.A. Jevons (eds.), New York: Lennox Hill Pub. and Dist. Co.

    Google Scholar 

  • Jevons, W. S. 1890. Pure Logic, and other Minor Works. Macmillan, New York.

    Google Scholar 

  • Johansson, I. 1937. Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus. Compositio Mathematica 4: 119–136.

    Google Scholar 

  • Jongsma, C. (1982). Richard Whately and the Revival of Syllogistic Logic in Great Britain in the Early Nineteenth Century.

    Google Scholar 

  • Jónsson, B. 1967. Algebras whose congruence lattices are distributive. Mathematica Scandinavica 21: 110–121.

    Article  Google Scholar 

  • Jónsson, B. 1986. The contributions of Alfred Tarski to general algebra. The Journal of Symbolic Logic 51 (4): 883–889.

    Article  Google Scholar 

  • Jónsson, B., and A. Tarski. 1951. Boolean algebras with operators. I. American Journal of Mathematics 73: 891–939.

    Article  Google Scholar 

  • Jourdain, P.E.B. 1914. The development of the theories of mathematical logic and the principles of mathematics. Quarterly Journal of Pure and Applied Mathematics 44 (William Stanley Jevons): 113–128.

    Google Scholar 

  • Kalman, J. A. 1958. Lattices with involution. Transactions of the American Mathematical Society 87: 485–491.

    Article  Google Scholar 

  • Katriňák. T. 1973. The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis, 3: 238–246.

    Google Scholar 

  • Kleene, S.C. 1952. Introduction to metamathematics. x+550. New York, NY: D. Van Nostrand Co., Inc.

    Google Scholar 

  • Kneale, W., and M. Kneale. 1962. The development of logic. Oxford: Clarendon Press.

    Google Scholar 

  • Kolmogorov, A.N. 1925. On the principle “tertium non datur”. English translation, On the principle of excluded middle, in [Hei 67], pp. 416–437, vol. 32:646–667.

    Google Scholar 

  • Kolmogorov, A.N. 1932. Zur Deutung der intuitionistischen Logik. Mathematische Zeitschrift 35 (1): 58–65.

    Article  Google Scholar 

  • Kracht, M. 1999. Tools and techniques in modal logic, Studies in logic and the foundations of mathematics. Vol. 142. Amsterdam: North-Holland Publishing Co.

    Book  Google Scholar 

  • Kripke, S.A. 1963. Semantical analysis of modal logic. I. Normal modal propositional calculi. Z. Math. Logik Grundlagen Math. 9: 67–96.

    Article  Google Scholar 

  • Kripke, S.A. 1965a. Semantical analysis of intuitionistic logic. I. In Formal systems and recursive functions (Proc. Eighth Logic Colloq., Oxford, 1963), 92–130. Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Kripke, S.A. 1965b. Semantical analysis of modal logic. II. Non-normal modal propositional calculi. In Theory of models (Proc. 1963 Internat. Sympos. Berkeley), 206–220. Amsterdam: North-Holland.

    Google Scholar 

  • Lagrange, J.L. 1867. Oeuvres de Lagrange, edited by MJ-A. Serret [et G. Darboux], Gauthier- Villars, Paris 1892:14.

    Google Scholar 

  • Lane, R. 1999. Peirce’s triadic logic revisited. Transactions of the Charles S. Peirce Society 35 (2): 284–311.

    Google Scholar 

  • Lane, R. 2001. Triadic logic. In The commens encyclopedia: The digital Encyclopedia of Peirce Studies, ed. M. Berg.

    Google Scholar 

  • Lemmon, E.J. 1966a. Algebraic semantics for modal logics. I. Journal of Symbolic Logic 31:46–65.

    Google Scholar 

  • Lemmon, E.J. 1966b. Algebraic semantics for modal logics. II. Journal of Symbolic Logic 31: 191–218.

    Article  Google Scholar 

  • Lewin, R. A., I. F. Mikenberg, and M. G. Schwarze. 1997. On the algebraizability of annotated logics. Studia Logica 59: 359–386.

    Google Scholar 

  • Lewis, C.I. 1912. Implication and the algebra of logic. Mind 21 (84): 522–531.

    Article  Google Scholar 

  • Lewis, C.I. 1914. The calculus of strict implication. Mind 23 (90): 240–247.

    Article  Google Scholar 

  • Lewis, C.I. 1920. Strict implication–an emendation. The Journal of Philosophy, Psychology and Scientific Methods 17 (11): 300–302.

    Article  Google Scholar 

  • Lewis, C.I. 1960. A survey of symbolic logic. New York: Dover.

    Google Scholar 

  • Lewis, C.I., and C.H. Langford. 1959. Symbolic logic. 2nd ed. New York: Dover Publications, Inc.

    Google Scholar 

  • Loemker, L. 1969. Leibniz: Philosophical papers and letters. 2nd ed. Seidel.

    Google Scholar 

  • Łoś, J. 1949. On logical matrices. Travaux de la Société des Sciences et des Lettres de Wroclaw, series B 1949 (19): 42.

    Google Scholar 

  • Łoś, J., and R. Suszko. 1958. Remarks on sentential logics. Nederl. Akad. Wetensch. Proc. Ser. A 61 Indag. Math 20: 177–183.

    Article  Google Scholar 

  • Łukasiewicz, J. 1951. Aristotle’s syllogistic from the standpoint of modern formal logic. Oxford: Clarendon Press.

    Google Scholar 

  • Łukasiewicz, J. 1967. Polish logic, 1920–1939.

    Google Scholar 

  • Łukasiewicz, J., and A. Tarski. 1930. Untersuchungen über den Aussagenkalkills. Comptes Rendus des seances de la Societe des Sciences et des Lettres de Varsovie 23:30.

    Google Scholar 

  • Macfarlane, A. 1879. Principles of the algerbra of logic. Edinburgh: D. Douglas.

    Google Scholar 

  • MacHale, D. 1985. George Boole: his life and work. Vol. 2. Profiles of Genius Series. With a foreword by J. L. Synge. Boole Press, Dún Laoghaire.

    Google Scholar 

  • Madarász, J.X. 1998. Interpolation and amalgamation; pushing the limits. Part I. Studia Logica 61 (3): 311–345.

    Article  Google Scholar 

  • Madarász, J.X. n.d. Meaningful generalization of modal logics. Journal of the IGPL.

    Google Scholar 

  • Maddux, R.D. 1993. Finitary algebraic logic. Mathematical Logic Quarterly 39: 566–569.

    Article  Google Scholar 

  • Maksimova, L.L. 1977a. Craig’s interpolation theorem and amalgamable manifolds. Doklady Akademii Nauk SSSR 237 (6): 1281–1284.

    Google Scholar 

  • Maksimova, L.L. 1977b. Craig’s theorem in superintuitionistic logics and amalgamable varieties. Algebra Logika 16 (6): 643–681, 741.

    Article  Google Scholar 

  • Maksimova, L.L. 1986. On maximal intermediate logics with the disjunction property. Studia Logica 45 (1): 69–75.

    Article  Google Scholar 

  • Malinowski, G. 1993. Many-Valued Logics. Vol. 25. Oxford Logic Guides. Studia Logica.

    Google Scholar 

  • Mal’cev, A.I. 1971. The metamathematics of algebraic systems. Collected papers: 1936–1967. Studies in logic and the foundations of mathematics, Vol. 66. Translated, edited, and provided with supplementary notes by Benjamin Franklin Wells, III. North-Holland Publishing Co., Amsterdam-London.

    Google Scholar 

  • Mal’cev, A. I. 1973. Algebraic systems. Posthumous edition, edited by D. Smirnov and M. Taiclin, translated from the Russian by B. D. Seckler and A. P. Doohovskoy. Akademie-Verlag, Berlin.

    Google Scholar 

  • Mancosu, P. 1998. From Brouwer to Hilbert. The debate on the foundations of mathematics in the 1920s, with the collaboration of Walter P. van Stigt, Reproduced historical papers translated from the Dutch, French and German. Oxford University Press, New York.

    Google Scholar 

  • Mancosu, P., R. Zach, and C. Badesa. 2009. The development of mathematical logic from Russell to Tarski, 1900–1935. In The development of modern logic, 318–470. Oxford: Oxford Univ. Press.

    Chapter  Google Scholar 

  • Mani, A., G. Cattaneo, and I. Duntsch, eds. 2018. Algebraic methods in general rough sets. Birkhauseer.

    Google Scholar 

  • Marek, V.W. 1977. The foundations of mathematics in Poland after World War II. In Logic Colloquium 76 (Oxford, 1976), Studies in logic and fmound. Math., vol. 87, 129–138.

    Google Scholar 

  • Marek, V.W., H. Rasiowa, and C. Rauszer. 2008. Mathematical logic in Warsaw in the 60’s and 70’s, or the interaction of logic and life. Andrzej Mostowski and Foundational Studies 15.

    Google Scholar 

  • Mazur, J. 2014. Enlightening Symbols: A Short History of mathematical notation and its hidden powers. Princeton: Princeton University Press.

    Book  Google Scholar 

  • McCune, W. 2009. Prover9 and Mace4. Version 2009-11A.

    Google Scholar 

  • McKenzie, R.N., G.F. McNulty, and W.F. Taylor. 1987. Algebras, lattices, varieties, The Wadsworth & Brooks/Cole Mathematics Series. Vol. I. Monterey, CA: Wadsworth & Brooks/Cole Advanced Books & Software.

    Google Scholar 

  • McKinsey, J.C.C., and A. Tarski. 1946. On closed elements in closure algebras. Annals of Mathematics 47 (2): 122–162.

    Article  Google Scholar 

  • McKinsey, J.C.C., and A. Tarski. 1948. Some theorems about the sentential calculi of Lewis and Heyting. The Journal of Symbolic Logic 13: 1–15.

    Article  Google Scholar 

  • Metcalfe, G. 2019. Bridges between logic and algebra. Bridges, nos. 1/32.

    Google Scholar 

  • Moisil, G.C. 1942. Logique modale. Disquisit. Math. Phys. 2: 3–98.

    Google Scholar 

  • Moisil, G.C. 1972. Essais sur les logiques non chrysippiennes. Bucharest: Éditions de l’Académie de la République Socialiste de Roumanie.

    Google Scholar 

  • Monk, J. D. 1986. The Contributions of Alfred Tarski to Algebraic Logic. The Journal of Symbolic Logic 51(4): 899–906.

    Google Scholar 

  • Monteiro, A.A. 1980. Sur les algèbres de Heyting symétriques. Special issue in honor of António Monteiro. Portugaliæ Mathematica 39 (1–4): 1–237.

    Google Scholar 

  • Nascimento, T., U. Rivieccio, J. Marcos, and M. Spinks. 2018. Algebraic semantics for Nelson’s logic S. In Logic, language, information, and computation, Lecture notes in computational science, vol. 10944, 271–288. Berlin: Springer.

    Chapter  Google Scholar 

  • Odintsov, S., ed. 2018. Larisa Maksimova on implication, interpolation, and definability, Outstanding contributions to logic. Vol. 15. Cham: Springer.

    Google Scholar 

  • Odintsov, S.P. 2003. Algebraic semantics for paraconsistent Nelson’s logic. Journal of Logic and Computation 13 (4): 453–468.

    Article  Google Scholar 

  • Odintsov, S.P. 2008. Constructive negations and paraconsistency, Trends in Logic—Studia Logica Library. Vol. 26. New York: Springer.

    Book  Google Scholar 

  • Ono, H. 2010. Algebraic Logic. In: Logic and Philosophy Today, edited by A. Gupta and J. van Benthem, 27: 221–246. Journal of Indian Council of Philosophical Research, New Delhi.

    Google Scholar 

  • Orlowska, E. 1998. Incomplete information: rough set analysis. Physica Verlag.

    Google Scholar 

  • Orlowska, E. 1999. Logic at work. Physica Verlag.

    Google Scholar 

  • Pagliani, P., and M. Chakraborty. 2008. A geometry of approximation. Springer.

    Book  Google Scholar 

  • Parkinson, G.H.R. 1966. Leibniz: Logical papers. Oxford University Press.

    Google Scholar 

  • Pawlak, Z. 1982. Rough sets. International Journal of Computer and Information Science 11 (5): 341–356.

    Article  Google Scholar 

  • Pawlak, Z. 1991. Rough sets. Theoretical aspects of reasoning about data. Dordrecht: Kluwer.

    Google Scholar 

  • Peacock, G. 1830. Treatise on algebra. Vol. 2. 2nd ed, 1842/1845. Cambridge: J. and J.J. Deighton.

    Google Scholar 

  • Peano, G. 1889. Arithmetices Principia, nova methodo exposita. Translated in van Heijenoort 1967 Turin: Boc:20–55. [Peano%201889%20(it)%20available%20online].

    Google Scholar 

  • Peano, G. 1895. The Formulaire de mathématiques. (Turin 1895-99, Paris 1901).

    Google Scholar 

  • Peckhaus, V. 1997. Logik, Mathesis universalis und allgemeine Wissenschaft. Logica Nova. Leibniz und die Wiederentdeckung der formalen Logik im 19. Jahrhundert. [Leibniz and the rediscovery of formal logic in the 19th century]. Akademie Verlag, Berlin.

    Google Scholar 

  • Peckhaus, V. 2004. Schröder’s logic. In The rise of modern logic: From Leibniz to Frege, Handb. Hist. Log, vol. 3, 557–609. Amsterdam: Elsevier/North-Holland.

    Chapter  Google Scholar 

  • Peckhaus, V. 2009. The mathematical origins of nineteenth-century algebra of logic. In The development of modern logic, 159–195. Oxford: Oxford Univ. Press.

    Chapter  Google Scholar 

  • Peirce, C.S. 1880. On the algebra of logic. Amer. J. Math. 3 (1): 15–57.

    Article  Google Scholar 

  • Pigozzi, D. 2004. Partially ordered varieties and quasi-varieties. Preprint.

    Google Scholar 

  • **ree, D. 2003. The logic of non-Western science: Mathematical discoveries in medieval India. Daedalus 132 (4): 45–53.

    Article  Google Scholar 

  • Pomykala, J., and J.A. Pomykala. 1988. The stone algebra of rough sets. Bulletin of the Polish Academy of Sciences, Mathematics 36: 495–512.

    Google Scholar 

  • Post, E.L. 1921. Introduction to a general theory of elementary propositions. American Journal of Mathematics 43 (3): 163–185.

    Article  Google Scholar 

  • Priest, G. 2008. An introduction to non-classical logic, Cambridge Introductions to Philosophy. From if to is. 2nd ed. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Prucnal, T., and A. Wronski. 1974. An algebraic characterization of the notion of structural completeness. Polish Academy of Sciences Institute of Philosophy and Sociology: Bulletin of the Section of Logic 3 (1): 30–33.

    Google Scholar 

  • Raftery, J.G. 2006. Correspondence between Gentzen and Hilbert systems. The Journal of Symbolic Logic 71 (3): 903–957.

    Article  Google Scholar 

  • Raftery, J.G. 2011. Contextual deduction theorems. Studia Logica (Special issue in honor of Ryszard Wójcicki) 99: 279–319.

    Google Scholar 

  • Raftery, J.G. 2013. Inconsistency lemmas in algebraic logic. Mathematical Logic Quarterly 59 (6): 393–406.

    Article  Google Scholar 

  • Raftery, J. G. 2006b. On the equational definability of truth predicates. Reports on Mathematical Logic (Special issue in memory of Willem Blok) available online 41:95–149.

    Google Scholar 

  • Rasiowa, H. 1974. An algebraic approach to non-classical logics. Studies in Logic and the Foundations of Mathematics, Vol. 78. North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York.

    Google Scholar 

  • Rasiowa, H. 1987. An algebraic approach to some approximate reasonings, 50:342–347.

    Google Scholar 

  • Rasiowa, H., and R. Sikorski. 1950. A proof of the completeness theorem of Gödel. Fundamenta Mathematicae 37: 193–200.

    Article  Google Scholar 

  • Rasiowa, H., and R. Sikorski. 1963. The mathematics of metamathematics. 522. Monografie Matematyczne, Tom 41. Panstwowe Wydawnictwo Naukowe, Warsaw.

    Google Scholar 

  • Ribenboim, P. 1949. Characterization of the sup-complement in a distributive lattice with last element. Summa Brasiliensis Mathematicae 2 (4): 43–49.

    Google Scholar 

  • Riche, J. 2007. From universal algebra to universal logic. Perspectives on Universal Logic, 3–39. Polimetrica Publisher: Itália.

    Google Scholar 

  • Riche, J. 2011. Logic in Whitehead’s universal algebra. Logique et Anal. (N.S.) 54 (214): 135–159.

    Google Scholar 

  • Romanowska, A. 1981. Subdirectly irreducible pseudocomplemented De Morgan algebras. Algebra universalis 12 (1): 70–75.

    Article  Google Scholar 

  • Rosenbloom, P.C. 1942. Post algebras. I. Postulates and general theory. Amer. J. Math. 64: 167–188.

    Article  Google Scholar 

  • Rosenbloom, P.C. 1950. The elements of mathematical logic. New York, NY: Dover Publications, Inc.

    Google Scholar 

  • Sankappanavar, H. P. 1985. Heyting algebras with dual pseudocomplementation. Pacific J. Math 117: 405–415.

    Google Scholar 

  • Sankappanavar, H. P. 1987a. Heyting algebras with a dual lattice endomorphism. Math. Logic Quarterly 33: 565–573.

    Google Scholar 

  • Sankappanavar, H.P. 1987b. Semi-De Morgan algebras. The Journal of Symbolic Logic 52 (3): 712–724.

    Article  Google Scholar 

  • Sankappanavar, H.P. 2008. Semi-Heyting algebras: An abstraction from Heyting algebras. In Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), 33–66. Actas Congr. “Dr. Antonio A. R. Monteiro”. Univ. Nac. del Sur, Bahia Blanca.

    Google Scholar 

  • Sankappanavar, H.P. 2011. Expansions of semi-Heyting algebras I: Discriminator varieties. Studia Logica 98 (1–2): 27–81.

    Article  Google Scholar 

  • Sankappanavar, H.P. 2014a. Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity. Categories and General Algebraic Structures with Applications 2 (1): 47–64.

    Google Scholar 

  • Sankappanavar, H.P. 2014b. Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity. Categories and General Algebraic Structures with Applications 2 (1): 65–82.

    Google Scholar 

  • Sankappanavar, H.P. 2016. A note on regular De Morgan semi-Heyting algebras. Demonstr. Math. 49 (3): 252–265.

    Google Scholar 

  • Schröder, E. 1890. Algebra der Logik. Leipzig, B.G. Teubner I-III (reprint Chelsea 1966).

    Google Scholar 

  • Scott, D. 1974a. Completeness and axiomatizability in many-valued logic. In Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math. Univ. California, Berkeley, Calif., 1971, 25:411–435.

    Google Scholar 

  • Scott, D. 1974b. Rules and derived rules. In Logical theory and semantic analysis: Essays dedicated to STIG KANGER on his fiftieth birthday, ed. S. Stenlund, A.-M. Henschen-Dahlquist, L. Lindahl, L. Nordenfelt, and J. Odelstad, 147–161. Netherlands, Dordrecht: Springer.

    Chapter  Google Scholar 

  • Shannon, C.E. 1948. A mathematical theory of communication. Bell System Technical Journal 27: 379–423, 623–656.

    Article  Google Scholar 

  • Sheffer, H.M. 1913. A set of five independent postulates for Boolean algebras, with application to logical constants. Transactions of the American Mathematical Society 14 (4): 481–488.

    Article  Google Scholar 

  • Skowron, A., and Z. Suraj, eds. 2013. Rough sets and intelligent dystems – Professor Zdzis law Pawlak in Memoriam – Volume 1, Intelligent systems reference library. Vol. 42. Springer.

    Google Scholar 

  • Stone, M. H. 1936. The theory of representations for Boolean algebras. Trans. Amer. Math. Soc. 4: 37–111.

    Google Scholar 

  • Stone, M.H. 1938a. Topological representations of distributive lattices and Brouwerian logics. Časopis pro pěsiování matematiky a fysiky, vol. 67 (1937–1938), pp. 1–25. The Journal of Symbolic Logic 3 (2): 90–91.

    Article  Google Scholar 

  • Stone, M.H. 1938b. The representation of Boolean algebras. Bulletin of the American Mathematical Society 44 (12): 807–816.

    Article  Google Scholar 

  • Styazhkin, N. I. 1969. History of mathematical logic from Leibniz to Peano. viii+333. Translated from the Russian. The M.I.T. Press, Cambridge, Mass.-London.

    Google Scholar 

  • Tarski, A. 1935. Grundzuge der Systemenkalkuls. Erster Teil. Fundamenta Mathematicae 25: 503–526.

    Article  Google Scholar 

  • Tarski, A. 1930a. Fundamentale Begriffe der Methodologie der deduktiven Wissenschaften. I. Monatshefte für Mathematik und Physik 37 (1): 361–404.

    Article  Google Scholar 

  • Tarski, A. 1930b. Über einige fundamentale Begriffe der Metamathematik (German). Comptes Rendus Séantes de la Société des Sciences et des Letters de Varsovie, Classe III. English translation: On some fundamental concepts of metamathematics, in: (Tarski, 1983), pp. 30–37. Sciences Mathémantiques et Physiques 23:22–29.

    Google Scholar 

  • Tarski, A. 1956. Logic, semantics, metamathematics. Papers from 1923 to 1938, translated by J. H. Woodger. Oxford at the Clarendon Press.

    Google Scholar 

  • Tarski, A. 1968. Equational logic and equational theories of algebras. In Contributions to Math. Logic (Colloquium, Hannover, 1966), 275–288. Amsterdam: North-Holland.

    Chapter  Google Scholar 

  • Tarski, A. 1983. Logic, semantics, metamathematics. Second Edition. Papers from 1923 to 1938, translated by J. H. Woodger, Edited, and with an Introduction, by John Corcoran. Hackett Publishing Company, Indianapolis.

    Google Scholar 

  • Tarski, A. 1994. Introduction to logic and to the methodology of the deductive sciences. Fourth. Vol. 24. Oxford Logic Guides, translated from the Polish by Olaf Helmer, edited and with a preface by Jan Tarski. The Clarendon Press, Oxford University Press, New York.

    Google Scholar 

  • Tarski, A. 1936a. Grundzüge der Systemenkalkül. Zweiter Teil. Fundamenta Mathematicae 26: 283–301.

    Article  Google Scholar 

  • Tarski, A. 1936b. Über den Begriff der logischen Folgerung. English translation: On the concept of logical consequence, in: (Tarski, 1956), pp. 409–420; (Tarski, 1983), pp. 409–420, Actes du Congrés international de philosophie scientifique, Sorbonne, Paris 1935, Fasc 7:1–11.

    Google Scholar 

  • Taylor, W. 1979. Equational logic. Houston Journal of Mathematics, no. Survey.

    Google Scholar 

  • Thomason, S.K. 1972. Semantic analysis of tense logic. Journal of Symbolic Logic 37: 150–158.

    Article  Google Scholar 

  • Torrens, A. 1991. Algebraic models of multidimensional deductive systems. Unpublished manuscript.

    Google Scholar 

  • Troelstra, A.S. 1992. Lectures on linear logic, CSLI lecture notes. Vol. 29. Stanford, CA: Stanford University, Center for the Study of Language/Information.

    Google Scholar 

  • Ursini, A., and P. Agliano, eds. 1996. Logic and algebra, Vol. 180. Marcel Dekker, Inc., New York.

    Google Scholar 

  • Uspensky, V.A. 1992. Kolmogorov and mathematical logic. The Journal of Symbolic Logic 57 (2): 385–412.

    Article  Google Scholar 

  • van der Waerden, B.L. 1955. Algebra. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete, Band XXXIV. 3te Aufl. Springer-Verlag, Berlin-Göttingen-Heidelberg.

    Google Scholar 

  • van der Waerden, B.L. 1985. A history of algebra. From al-Khwarizmi to Emmy Noether. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • van Evra, J.W. 1977. A reassessment of George Boole’s theory of logic. Notre Dame Journal of Formal Logic 18 (3): 363–377.

    Google Scholar 

  • van Heijenoort, J. 1967. From Frege to Gödel. A source book in mathematical logic, 1879–1931. Harvard University Press, Cambridge, Mass.

    Google Scholar 

  • Varadarajan, V.S. 1998. Algebra in ancient and modern times. Vol. 12. Mathematical World. American Mathematical Society, Providence, RI; Hindustan Book Agency, Delhi.

    Google Scholar 

  • Varlet, J. 1972. A regular variety of type ¡2, 2, 1, 1, 0, 0, 0 ¿. Algebra universalis 2: 218–223.

    Article  Google Scholar 

  • Viète, F. 1983. The analytic art. Nine studies in algebra, geometry and trigonometry from the it Opus restitutae mathematicae analyseos, seu algebrâ novâ, translated from the Latin and with an introduction by T. Richard Witmer. Kent State University Press, Kent, OH.

    Google Scholar 

  • Wang, H. 1963. A survey of mathematical logic. Science Press, Peking; North-Holland Publishing Co., Amsterdam.

    Google Scholar 

  • Weyl, H. 1944. David Hilbert and his mathematical work. Bulletin of the American Mathematical Society 50: 612–654.

    Article  Google Scholar 

  • Whately, R. 1827. Elements of logic. London: J. Mawman.

    Google Scholar 

  • Whitehead, A. N. 2009. A treatise on universal algebra. Cambridge Library Collection. With applications, Reprint of the 1898 original. Cambridge University Press, Cambridge.

    Google Scholar 

  • Whitehead, A. N., and B. Russell. 1910. Principia mathematica. 3 volume work: Vol. 1 in 1910, Vol. 2 in 1912, Vol. 3 in 1914. Cambridge: Cambridge University Press.

    Google Scholar 

  • Wójcicki, R. 1973. Matrix approach in methodology of sentential calculi. Studia Logica 32: 7–39.

    Article  Google Scholar 

  • Wójcicki, R. 1988. Theory of logical calculi, Synthese library. Basic theory of consequence operations. Vol. 199. Dordrecht: Kluwer Academic Publishers Group.

    Book  Google Scholar 

  • Wolenski, J. 1995. Mathematical logic in Poland 1900–1939: People, circles, institutions, ideas. Modern Logic 5 (4): 363–405.

    Google Scholar 

  • Woods, John, ed. 2009. Handbook of the history of logic. Logic from Russell to Church, Handbook of the history of logic. Vol. 5. Amsterdam: Elsevier/North-Holland.

    Google Scholar 

  • Wronski, A. 1973. Intermediate logics and the disjunction property. Reports on Mathematical Logic 1: 39–51.

    Google Scholar 

  • Wronski, A. 1976. Remarks on Hallden completeness of modal and intermediate logics. Polish Academy of Sciences Institute of Philosophy and Sociology: Bulletin of the Section of Logic 5 (4): 126–129.

    Google Scholar 

  • Zach, R. 1999. Completeness before Post: Bernays, Hilbert, and the development of propositional logic. The Bulletin of Symbolic Logic 5 (3): 331–366.

    Article  Google Scholar 

  • Zadeh, L.A. 1965. Fuzzy sets. Information and Control 8: 338–353.

    Article  Google Scholar 

  • Zakharyaschev, M., F. Wolter, and A. Chagrov. 2001. Advanced modal logic. In Handbook of philosophical logic, vol. 3, 83–266. Dordrecht: Kluwer Acad. Publ.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanamantagouda P. Sankappanavar .

Editor information

Editors and Affiliations

Section Editor information

Additional information

Dedicated to the memory of

The Founders of Indian Logic:

MEDHATITHI GAUTAMA (cerca de 550 BCE)

The author of Anwikshiki and Nyaya-Shastra

and

AKSHAPADA GAUTAMA (cerca de 150 CE)

The author of Nyaya-Sutra

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature India Private Limited

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Sankappanavar, H.P. (2022). A Few Historical Glimpses into the Interplay Between Algebra and Logic and Investigations into Gautama Algebras. In: Sarukkai, S., Chakraborty, M.K. (eds) Handbook of Logical Thought in India. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2577-5_54

Download citation

Publish with us

Policies and ethics

Navigation