Phenoty** Methods of Fungal Diseases, Parasitic Nematodes, and Weeds in Cool-Season Food Legumes

  • Chapter
  • First Online:
Phenomics in Crop Plants: Trends, Options and Limitations

Abstract

The productivity and production of crop plants are low in many parts of the world due to several biotic and abiotic stresses. The major biotic stresses are caused by foliar- and soil-borne diseases, parasitic weeds, and parasitic nematodes. Distribution and importance of diseases, parasitic weeds, and nematodes of cool-season food legumes are global and eco-regional in nature. For develo** resistant germplasm, it requires systematic screening using field- and greenhouse-based techniques against the target biotic stresses. These phenoty** techniques have led to the identification of many varieties and germplasm currently in use by farmers and researchers. This chapter provides information on those techniques that are being employed to phenotype several diseases, parasitic nematodes, and weeds in cool-season food legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ahmed S, Morrall RAA (1996) Field reactions of lentil lines and cultivars to isolates of Ascochyta fabae f. sp. lentis. Can J Plant Pathol 18:362–369

    Article  Google Scholar 

  • Ahmed S, Piggin C, Haddad A, Kumar S, Khalil Y, Geletu B (2012) Nematode and fungal diseases of food legumes under conservation crop** systems in northern Syria. Soil Tillage Res 121:68–73

    Article  Google Scholar 

  • Avila CM, Satovic Z, Sillero JC, Rubiales D, Moreno MT, Torres AM (2004) Isolate and organ-specific QTLs for ascochyta blight resistance in faba bean (Vicia faba L). Theor Appl Genet 108:1071–1078

    Article  CAS  PubMed  Google Scholar 

  • Bani M, Rubiales D, Rispail N (2012) A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol 61:532–542

    Article  Google Scholar 

  • Banyal DK, Tyagi PD (1997) Resistance of pea genotypes in relation to sporulation by Erysiphe pisi. Crop Prot 16:51–55

    Article  Google Scholar 

  • Barilli E, Sillero JC, Moral A, Rubiales D (2009a) Characterization of resistance response of pea (Pisum spp.) against rust (Uromyces pisi). Plant Breed 128:66–5670

    Article  Google Scholar 

  • Barilli E, Sillero JC, Serrano A, Rubiales D (2009b) Differential response of pea (Pisum sativum) to rusts incited by Uromyces viciae-fabae and U. pisi. Crop Prot 28:980–986

    Article  Google Scholar 

  • Bayaa B, Erskine W, Singh M (1997) Screening lentil for resistance to Fusarium wilt: methodology and sources of resistance. Euphytica 98:69–74

    Article  Google Scholar 

  • Bouhassan AM, Sadiki M, Tivoli B (2004) Evaluation of a collection of faba bean (Vicia faba L.) genotypes originating from the Maghreb for resistance to chocolate spot (Botrytis fabae) by assessment in the field and laboratory. Euphytica 135:55–62

    Article  Google Scholar 

  • Brinsmead RB, Rettke ML, Irwin JAG, Langdon PW (1985) Resistance in chickpea to Phytophthora megasperma f. sp. medicaginis. Plant Dis 69:504–506

    Article  Google Scholar 

  • Buchwaldt L, Anderson KL, Morrall RAA, Gossen BD, Bernier CC (2003) Identification of lentil germplasm resistant to Colletotrichum truncatum and characterization of two pathogen races. Phytopathology 94:236–243

    Article  Google Scholar 

  • Buchwaldt L, Shaikh R, Adam J, Tullu A, Slinkard AE (2013) Recessive and dominant genes confer resistance to Colletotrichum truncatum in cultivated lentil. Can J Plant Pathol 35:222–231

    Article  CAS  Google Scholar 

  • Castillo P, Navas-Cortés JA, Landa BB, Jiménez-Díaz RM, Vovlas N (2008) Plant-parasitic nematodes attacking chickpea and their in planta interactions with rhizobia and phytopathogenic fungi. Plant Dis 92:840–853

    Article  Google Scholar 

  • Chaerle L, Hagenbeek D, de Bruyne E, van der Straeten D (2007) Chlorophyll fluorescence imaging for disease-resistance screening of sugar beet. Plant Cell Tissue Organ Cult 91:97–106

    Article  CAS  Google Scholar 

  • Chand R, Srivastava CP, Singh BD, Sarode SB (2006) Identification and characterization of slow rusting components in pea (Pisum sativum L.). Genet Resour Crop Evol 53:219–224

    Article  Google Scholar 

  • Chen W, Muehlbauer FJ (2003) An improved technique for virulence assay of Ascochyta rabiei on chickpea. Int Chickpea Pigeonpea Newslett 10:31–33

    CAS  Google Scholar 

  • Chen W, McPhee KE, Muehlbauer FJ (2005) Use of a mini-dome bioassay and grafting to study resistance of Chickpea to AB. J Phytopathol 153:579–582

    Article  Google Scholar 

  • Chen X, Vosman B, Visser RGF, van der Vlugt RAA, Broekgaarden C (2011) High throughput phenoty** for aphid resistance in large plant collections. Plant Methods 8:33

    Article  CAS  Google Scholar 

  • Cubero JI, Pieterse AH, Khalil SA, Sauerborn J (1994) Screening techniques and sources of resistance to parasitic angiosperms. Euphytica 73:51–58

    Article  Google Scholar 

  • Davidson JA, Materne M, Lindbeck KD, Krysinska-Kaczmarek M, Hartley D (2004) Understanding botrytis grey mould of lentils in Australia and identifying useful resistance. In: 5th European Grain Legumes conference, Dijon, 7–11 June 2004, pp 83–84

    Google Scholar 

  • Davidson JA, Krysinska-Kaczmarek M, Wilmshurst CJ, McKay AH, Scott ES (2011) Distribution and survival of ascochyta blight pathogens in field-pea-crop** soils of Australia. Plant Dis 95:1217–1223

    Article  Google Scholar 

  • Di Vito M, Greco N, Singh KB, Saxena MC (1996) Sources of resistance to cyst nematode in cultivated and wild Cicer species. Genet Resour Crop Evol 43:103–107

    Article  Google Scholar 

  • Du W, Zhao X, Raju T, Davies P, Trethowan R (2013) Studies on the resistance of some Australasian chickpeas (Cicer arietinum L.) to phytophthora root rot disease. AJCS 7:794–800

    Google Scholar 

  • Emeran AA, Sillero JC, Niks RE, Rubiales D (2005) Infection structures of host specialized isolates of Uromyces viciae-fabae and of other species of Uromyces infecting leguminous crops. Plant Dis 89:17–22

    Article  Google Scholar 

  • Feng J, Hwang R, Chang KF, Conner RL, Hwang SF, Strelkov SE, Gossen BD, McLaren DL, Xue AG (2011) Identification of microsatellite markers linked to quantitative trait loci controlling resistance to fusarium root rot in field pea. Can J Plant Sci 91:199–204

    Article  Google Scholar 

  • Fernández-Aparicio M, Moral A, Kharrat M, Rubiales D (2012) Resistance against broomrapes (Orobanche and Phelipanche spp.) in faba bean (Vicia faba) based in low induction of broomrape seed germination. Euphytica 186:897–905

    Article  Google Scholar 

  • Fikere M, Tadesse T, Gebeyehu S, Hundie B (2010) Agronomic performances, disease reaction and yield stability of field pea (Pisum sativum L.) genotypes in Bale Highlands, Ethiopia. AJCS 4:238–246

    Google Scholar 

  • Furbank RT (2009) Plant phenomics: from gene to form and function. Funct Plant Biol 36:v–vi

    Article  Google Scholar 

  • Furbank RT, Tester M (2012) Phenomics – technologies to relieve the phenoty** bottleneck. Trends Plant Sci 16:625–644

    Google Scholar 

  • Gaur PM, Aravind KJ, Varshney RK (2012) Impact of genomic technologies on chickpea breeding strategies. Agronomy 2:199–221

    Article  Google Scholar 

  • Gill TS, Davidson JA (2005) A preservation method for Peronospora viciae spores. Australas Plant Pathol 34:259–260

    Article  Google Scholar 

  • Goldwasser Y, Miryamchik H, Sibony M, Rubin B (2012) Detection of resistant chickpea (Cicer arietinum) genotypes to Cuscuta campestris (field dodder). Weed Res 52:122–130

    Article  Google Scholar 

  • Hanounik SB, Maliha N (1986) Horizontal and vertical resistance in Vicia faba to chocolate spot caused by Botrytis fabae. Plant Dis 70:770–773

    Article  Google Scholar 

  • Hanounik SB, Robertson LD (1989) Resistance in Vicia faba germplasm to blight caused by Ascochyta fabae. Plant Dis 73:202–205

    Article  Google Scholar 

  • Heath MC, Wood RKS (1969) Leaf spots induced by Ascochyta pisi and Mycosphaerella pinodes. Ann Bot 33:657–670

    Google Scholar 

  • Herath IHMHB, Stoddard FL, Marshall DR (2001) Evaluating faba beans for rust resistance using detached leaves. Euphytica 117:47–57

    Article  Google Scholar 

  • Houle D, Diddahally RG, Stig O (2010) Phenomics: the next challenge. Nat Rev 11:855–866

    Article  CAS  Google Scholar 

  • Imtiaz M, Abang MM, Malhotra RS, Ahmed S, Bayaa B, Udupa SM, Baum M (2011) Pathotype IV, a new and highly virulent pathotype of Didymella rabiei, causing ascochyta blight in chickpea in Syria. Plant Dis 95:1192

    Article  Google Scholar 

  • Infantino A, Kharrat M, Riccioni L, Coyne CJ, McPhee KE, Grunwald NJ (2006) Screening techniques and sources of resistance to root diseases in cool season food legumes. Euphytica 147:201–221

    Article  Google Scholar 

  • Kaur L, Sirari A, Kumar D et al (2013) Combining ascochyta blight and botrytis grey mould resistance in chickpea through interspecific hybridization. Phytopathol Mediterr 52:157–165

    CAS  Google Scholar 

  • Kimber RBE, Paull JG (2011) Identification and genetics of resistance to cercospora leaf spot (Cercospora zonata) in faba bean (Vicia faba). Euphytica 177:419–429

    Article  Google Scholar 

  • Kohpina S, Knight R, Stoddard FL (2000) Evaluating faba beans for resistance to ascochyta blight using detached organs. Aust J Exp Agric 40:707–713

    Article  Google Scholar 

  • Kottapalli J, Gaur PM, Katiyar SK, Crouch JH, Buhariwalla HK, Pande S, Gali KK (2009) Map** and validation of QTLs for resistance to an Indian isolate of ascochyta blight pathogen in chickpea. Euphytica 165:79–88

    Article  Google Scholar 

  • Kraft JM, Haware MP, Jimenez-Diaz RM, Bayaa B, Harrabi M (1994) Screening techniques and sources of resistance to root rots and wilts in cool season food legumes. Euphytica 73(2):7–39

    Google Scholar 

  • Kumar J, Pratap A, Solanki RK, Gupta DS, Goyal A, Chaturvedi SK, Nadarajan N, Kumar S (2012) Genomic resources for improving food legume crops. J Agric Sci 150:289–318

    Article  CAS  Google Scholar 

  • Lindbeck KD, Bretag TW, Materne MA (2008) Field screening in Australia of lentil germplasm for resistance to botrytis grey mould. Australas Plant Pathol 37:373–378

    Article  Google Scholar 

  • Linke KH, Singh KB, Saxena MC (1991) Screening technique for resistance to Orobanche crenata forks, in chickpea. Int Chickpea Newsl 24:32–34

    Google Scholar 

  • Maalouf F, Khalil S, Ahmed S, Akintunde AN, Kharrat M, El Shamaa K, Hijjar S, Malhotra RS (2011) Yield stability of faba bean lines under diverse broomrape prone production environments. Field Crop Res 124:288–294

    Article  Google Scholar 

  • Maurin N, Tivoli B (1992) Variation in the resistance of Vicia faba to Ascochyta fabae in relation to disease development infield trials. Plant Pathol 41:737–744

    Article  Google Scholar 

  • Muehlbauer FJ, Chen W (2007) Resistance to ascochyta blights of cool season food legumes. Eur J Plant Pathol 119:135–141

    Article  Google Scholar 

  • Muehlbauer FJ, Kaiser WJ (1994) Using host resistance to manage biotic stresses in cool season food legumes. Euphytica 73:1–10

    Article  Google Scholar 

  • Mwakutuya E, Banniza S (2010) Influence of temperature and wetness periods on the development of stemphylium blight on lentil. Plant Dis 94:1219–1224

    Article  Google Scholar 

  • Nene YL (1988) Multiple disease resistance in grain legumes. Annu Rev Phytopathol 26:203–2017

    Article  Google Scholar 

  • Nene YL, Haware MP (1980) Screening chickpea for resistance to wilt. Plant Dis 64:379–380

    Article  Google Scholar 

  • Nene YL, Haware MP, Reddy MV (1981) Chickpea diseases: resistance-screening techniques. Information Bulletin No. 10. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 1981, 10 p

    Google Scholar 

  • Onfroy C, Baranger A, Tivoli B (2007) Biotic factors affecting the expression of partial resistance in pea to ascochyta blight in a detached stipule assay. Eur J Plant Pathol 119:13–27

    Article  Google Scholar 

  • Pande S, Galloway JJ, Gaur PM, Siddique KHM, Tripathi HS, Taylor P, MacLeod MWJ, Basandrai AK, Bakr A, Joshi S, Krishna Kishore G, Isenegger DA, Narayana Rao J, Sharma M (2006) Botrytis grey mould of chickpea: a review of biology, epidemiology, and disease management. Aust J Agric Res 57:1137–1150

    Article  Google Scholar 

  • Pande S, Sharma M, Kumari S, Gaur PM, Chen W, Kaur L, MacLeod W, Basandrai A, Basandrai D, Bakr A, Sandhu JS, Tripathi S, Gowda CLL (2009) Integrated foliar diseases management of legumes. In: International conference on Grain Legumes: Quality Improvement, Value Addition and Trade, Indian Society of Pulses Research and Development, Indian Institute of Pulses Research, Kanpur, 14–16 Feb 2009, pp 143–161

    Google Scholar 

  • Pande S, Sharma M, Gaur PM, Tripathi S, Kaur L, Basandrai A, Khan T, Gowda CLL, Siddique KHM (2011) Development of screening techniques and identification of new sources of resistance to ascochyta blight disease of chickpea. Australas Plant Pathol 40:149–156

    Article  Google Scholar 

  • Pande S, Sharma M, Gaur PM, Basandrai A, Kaur L, Hooda KS, Basandrai D, Babu TK, Jain SK, Rathore A (2013) Biplot analysis of genotype × environment interactions and identification of stable sources of resistance to ascochyta blight in chickpea (Cicer arietinum L.). Australas Plant Pathol 42:561–571

    Article  CAS  Google Scholar 

  • Pérez-de-Luque A, Jorrín J, Cubero JI, Rubiales D (2005) Resistance and avoidance against Orobanche crenata in pea (Pisum spp.) operate at different developmental stages of the parasite. Weed Res 45:379–387

    Article  Google Scholar 

  • Podder R, Banniza S, Vandenberg A (2013) Screening of wild and cultivated lentil germplasm for resistance to stemphylium blight. Plant Genet Resour 11:26–35

    Article  Google Scholar 

  • Poland JA, Nelson RJ (2011) In the eye of the beholder: the effect of rater variability and different rating scales on QTL map**. Phytopathology 101:290–298

    Article  PubMed  Google Scholar 

  • Porto-Puglia A, Bernier CC, Jellis GJ, Kaiser WJ, Reddy MV (1994) Screening techniques and sources of resistance to foliar diseases caused by fungi and bacteria in cool season food legumes. Euphytica 73:11–25

    Article  Google Scholar 

  • Rai R, Singh AK, Singh BD, Joshi AK, Chand R, Srivastava CP (2011) Molecular map** for resistance to pea rust caused by Uromyces fabae (Pers.) de-Bary. Theor Appl Genet 123:803–813

    Article  PubMed  Google Scholar 

  • Rana JC, Banyal DK, Sharma DK, Sharma MK, Gupta SK, Yadav SK (2013) Screening of pea germplasm for resistance to powdery mildew. Euphytica 189:271–282

    Article  CAS  Google Scholar 

  • Rodríguez-Conde MF, Moreno MT, Cubero JI, Rubiales D (2004) Characterization of the OrobancheMedicago truncatula association for studying early stages of the parasite–host interaction. Weed Res 44:218–223

    Article  Google Scholar 

  • Rousseau C, Belin E, Bove E, Rousseau D, Fabre F, Berruyer R, Guillaumes J, Manceau C, Jacques MA, Boureau T (2013) High throughput quantitative phenoty** of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rubiales D, Avila CM, Sillero JC, Hybl M, Narits L, Sasse O, Flores F (2012) Identification and multi-environment validation of resistance to Ascochyta fabae in faba bean (Vicia faba). Field Crop Res 126:165–170

    Article  Google Scholar 

  • Rubiales D, Sillero JC, Emeran AA (2013) Response of vetches (Vicia spp.) to specialized forms of Uromyces vicia-fabae and to Uromyces pisi. Crop Prot 46:38–43

    Article  Google Scholar 

  • Ryan EW (1971) Two methods of infecting peas systemically with Peronospora pisi, and their application in screening cultivars for resistance. Ir J Agric Sci 10:315–322

    Google Scholar 

  • Sauerborn JH, Masri H, Saxena MC, Erskine W (1987) A rapid test to screen lentil under laboratory conditions for susceptibility to Orobanche. Lens Newsl 14:15–16

    Google Scholar 

  • Scholes JD, Rolfe SA (2009) Chlorophyll fluorescence imaging as a tool for understanding the impact of fungal diseases on plant performance: a phenomics perspective. Funct Plant Biol 36:880–892

    Article  Google Scholar 

  • Shaikh R, Diederichsen A, Harrington M, Adam J, Conner RL, Buchwaldt L (2013) New sources of resistance to Colletotrichum truncatum race Ct0 and Ct1 in Lens culinaris Medikus. subsp. culinaris obtained by single plant selection in germplasm accessions. Genet Resour Crop Evol 60:193–201

    Article  Google Scholar 

  • Sharma SB, Sikora RA, Greco N, Di Vito M, Caubel G (1994) Screening techniques and sources of resistance to nematodes in cool season food legumes. Euphytica 7:59–66

    Google Scholar 

  • Sharma KD, Chen W, Muehlbauer FJ (2005) Genetics of chickpea resistance to five races of Fusarium wilt and a concise set of race differentials for Fusarium oxysporum f. sp. ciceris. Plant Dis 89:385–390

    Article  Google Scholar 

  • Sharma M, Babu TK, Ghosh R, Telangre R, Rathore A, Kaur L, Kushuaha KPS, Das R, Pande S (2013) Multi-environment field testing for identification and validation of genetic resistance to Botrytis cinerea causing Botrytis grey mold in chickpea (Cicer arietinum L.). Crop Prot 54:106–113

    Article  Google Scholar 

  • Siddique KHM, Erskine W, Hobson K, Knights EJ, Leonforte A, Khan TN, Paul JG, Redden R, Materne M (2013) Cool-season grain legume improvement in Australia-use of genetic resources. Crop Pasture Sci 64:347–360

    Article  CAS  Google Scholar 

  • Sillero JC, Avila CM, Moreno MT, Rubiales D (2001) Identification of resistance to Ascochyta fabae in Vicia faba germplasm. Plant Breed 120:529–531

    Article  Google Scholar 

  • Sillero JC, Fondevilla S, Davidson J, Vaz Patto MC, Warkentin TD, Thomas J, Rubiales D (2006) Screening techniques and sources of resistance to rusts and mildews in grain legumes. Euphytica 147:255–272

    Article  Google Scholar 

  • Sillero JC, Moreno-Alías I, Rubiales D (2012) Identification and characterization of resistance to rust [Uromyces ciceris-arietini (Grognot) Jacz. & Boyd] in a germplasm collection of Cicer spp. Euphytica 188:229–238

    Article  CAS  Google Scholar 

  • Singh G, Singh K, Gill AS, Brar JS (1982) Screening of lentil varieties/lines for blight resistance. Indian Phytopathol 35:678–679

    Google Scholar 

  • Singh G, Chen W, Rubiales D, Moore K, Sharma YR, Gan Y (2007) Diseases and their management. In: Yadav SS et al (eds) Chickpea breeding and management. CABI International, Wallingford

    Google Scholar 

  • Smith PH, Foster EM, Boyd LA, Brown KM (1996) The early development of Erysiphe pisi in Pisum sativum L. Plant Pathol 45:302–309

    Article  Google Scholar 

  • Stegmark R (1991) Comparison of different inoculation techniques to screen resistance of pea lines to downy mildew. J Phytopathol 113:209–215

    Article  Google Scholar 

  • Stuteville DL, Graves WL, Dixon LJ, Castlebury LA, Minnis AM (2010) Uromyces ciceris-arietini, the cause of chickpea rust: new hosts in the Trifolieae, Fabaceae. Plant Dis 94:293–297

    Article  Google Scholar 

  • Tar’an B, Buchwaldt L, Tullu A, Banniza S, Warkentin TD, Vandenberg A (2003) Using molecular markers to pyramid genes for resistance to ascochyta blight and anthracnose in lentil (Lens culinaris Medik.). Euphytica 134:223–230

    Article  Google Scholar 

  • Thomas JE, Camps AJ (1997) Assessment of resistance to downy mildew (Peronospora viciae) in seedlings of field bean cultivars. In: Proceedings of the international food legume research conference III, Abstracts, Adelaide, 1997, p 158

    Google Scholar 

  • Thomas JE, Kenyon D (2004) Evaluating resistance to downy mildew (Peronospora viciae) in field peas (Pisum sativum L.) and field beans (Vicia fabae L.). In: AEP (ed) Proceedings of 5th European conference on Grain Legumes, Dijon, 2004, pp 81–82

    Google Scholar 

  • Thompson JP, Reen RA, Clewett TG, Sheedy JG, Kelly AM, Gogel BJ, Knights EJ (2011) Hybridisation of Australian chickpea cultivars with wild Cicer spp. increases resistance to root-lesion nematodes (Pratylenchus thornei and P. neglectus). Australas Plant Pathol 40:601–611

    Article  Google Scholar 

  • Tivoli B, Berthelem B, Le Guen J, Onfroy C (1986) Comparison of some methods for evaluation of reaction of different winter faba bean genotypes to Botrytis fabae. FABIS Newsl 16:46–51

    Google Scholar 

  • Tivoli B, Baranger B, Avila CM, Banniza S, Barbetti M, Chen W, Davidson J, Lindeck K, Kharrat M, Rubiales D, Sadiki M, Sillera JC, Sweetingham M, Muehlbauer J (2006) Screening techniques and sources of resistance to foliar diseases caused by major necrotrophic fungi in grain legumes. Euphytica 147:223–253

    Article  Google Scholar 

  • Torres AM, Román B, Avila CM, Satovic Z, Rubiales D, Sillero JC, Cubero JI, Moreno MT (2006) Faba bean breeding for resistance against biotic stresses: towards application of marker technology. Euphytica 147:67–80

    Article  Google Scholar 

  • Tullu A, Buchwaldt L, Warkentin T, Taran B, Vandenberg A (2003) Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theor Appl Genet 106:428–434

    CAS  PubMed  Google Scholar 

  • Varshney RK, Kudapa H, Roorkiwal M, Thudi M, Pandey MK, Saxena RK, Chamarthi SK, Mohan SM, Mallikarjuna N, Upadhyaya H, Gaur M, Krishnamurthy L, Saxena KB, Nigam SN, Pande S (2012) Advances in genetics and molecular breeding of three legume crops of semi-arid tropics using next-generation sequencing and high-throughput genoty** technologies. J Biosci 37:811–820

    Article  CAS  PubMed  Google Scholar 

  • Vaz Patto MC, Fernández-Aparicio M, Moral M, Rubiales D (2006) Characterization of resistance to powdery mildew (Erysiphe pisi) in a germplasm collection of Lathyrus sativus. Plant Breed 125:308–310

    Article  Google Scholar 

  • Viljanen-Rollinson SLH, Gaunt RE, Frampton CMA, Faloon RE, NcNeil DL (1998) Components of resistance to powdery mildew (Erysiphe pisi) in pea (Pisum sativum). Plant Pathol 47:137–147

    Article  Google Scholar 

  • Villegas-Fernández AM, Sillero JC, Rubiales D (2012) Screening faba bean for chocolate spot resistance: evaluation methods and effects of age of host tissue and temperature. Eur J Plant Pathol 132:443–453

    Article  Google Scholar 

  • White JW, Andrade-Sanchez P, Gorea MA et al (2012) Field-based phenomics for plant genetics research. Field Crop Res 133:101–112

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seid Ahmed Kemal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer India

About this chapter

Cite this chapter

Kemal, S.A. (2015). Phenoty** Methods of Fungal Diseases, Parasitic Nematodes, and Weeds in Cool-Season Food Legumes. In: Kumar, J., Pratap, A., Kumar, S. (eds) Phenomics in Crop Plants: Trends, Options and Limitations. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2226-2_10

Download citation

Publish with us

Policies and ethics

Navigation