Enhancement of Cytotoxic Effects of Chemotherapeutic Agents with Hyperthermia In Vitro

  • Chapter
Thermotherapy for Neoplasia, Inflammation, and Pain

Summary

Interactive effects of combined treatment with hyperthermia and chemotherapeutic agents were interpreted in the experimental aspects of medical science. A survey of the literature and our own studies indicate that cytotoxicity of alkylating agents, cisplatin, bleomycin, and mitomycin C (MMC) can be enhanced at elevated temperatures. However, the thermal enhancement of doxorubicin (Dox) is complicated or even doubtful against tumors, because Dox could potentially enhance production of heat-induced heat-shock proteins that may contribute to certain mechanisms in the development of thermotolerance. Comparative studies indicated that the thermal enhancement of MMC cytotoxicity is marked and that the development of thermotolerance was partially inhibited by MMC. An interesting observation is that the cytotoxicity of some drugs is enhanced by mild hyperthermia. These findings are significant in the use of chemotherapy together with mild hyperthermia, which can avoid potential heat-induced normal tissue damage following local or regional hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
EUR 9.99
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Johnson HA, Pavelec M (1973) Thermal enhancement of thio-TEPA cytotoxicity. J Natl Cancer Inst 50: 903–908

    PubMed  CAS  Google Scholar 

  2. Hahn GM, Braun J, Har-Kedar I (1975) Thermochemotherapy: synergism between hyperthermia (42–43°C) and adriamycin (or bleomycin) in mammalian cell inactivation. Proc Natl Acad Sci USA 72: 937–940

    Article  PubMed  CAS  Google Scholar 

  3. Hahn GM, Strande DP (1976) Cytotoxic effects of hyperthermia and adriamycin on Chinese hamster cells. J Natl Cancer Inst 57: 1063–1067

    PubMed  CAS  Google Scholar 

  4. Engelhardt R (1987) Hyperthermia and drugs. Recent Results Cancer Res 104: 136–203

    Article  PubMed  CAS  Google Scholar 

  5. Urano M (1994) Thermochemotherapy: from in vitro and in vivo experiments to potential clinical application. In: Urano M, Douple EB (eds) Hyperthermia and oncology. VSP, Utrecht, pp 169–204

    Google Scholar 

  6. Kawahara K, Kano E (1994) Enhancement of cytotoxic effects of chemotherapeutic agents in vitro and in vivo antibiotics. In: Urano M, Douple EB (eds) Hyperthermia and oncology. VSP, Utrecht, pp 55–69

    Google Scholar 

  7. Kano E, Nitta K, Hayashi S, et al (1998) Effect of benzaldehyde on survivals of Chinese hamster V-79 cells in vitro from the combined treatment with hyperthermia. Jpn J Hyperthermic Oncol 14: 125–129

    Google Scholar 

  8. Gerner EW, Schneider MJ (1975) Induced thermal resistance in HeLa cells. Nature (Lond) 256: 500–502

    Article  CAS  Google Scholar 

  9. Woodhall B, Pickrell KL, Georgiade NG, et al (1960) Effect of hyperthermia upon cancer chemotherapy: application to external cancers of head and face structures. Ann Surg 151: 750–759

    Article  PubMed  CAS  Google Scholar 

  10. Stehlin JS (1969) Hyperthermic perfusion with chemotherapy for cancer of the extremities. Surg Gynecol Obstet 129: 305–308

    PubMed  Google Scholar 

  11. Dickson JA, Suzanger M (1974) In vitro-in vivo studies on the susceptibility of solid Yoshida sarcoma to drug and hyperthermia (42 degrees C). Cancer Res 34: 1263–1274

    PubMed  CAS  Google Scholar 

  12. Hahn GM (1978) Interaction of drugs and hyperthermia in vitro and in vivo. In: Streffer C (ed) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 72–79

    Google Scholar 

  13. Barlogie B, Corry PM, Drewinko B (1980) In vitro thermochemotherapy of human colon cancer cells with cisdichlorodiammineplatinum (II) and mitomycin C. Cancer Res 40: 1165–1168

    PubMed  CAS  Google Scholar 

  14. Roberts JJ, Friedlos F (1982) The frequency of inter-strand cross-links in DNA following reaction of cis-diamminedichloroplatinum (II) with cells in culture or DNA in vitro: stability of DNA cross-links and their repair. Chem-Biol Interact 39: 181–189

    Article  PubMed  CAS  Google Scholar 

  15. Knox RJ, Friedlos F, Lydall D, et al (1986) Mechanism of cytotoxicity of anticancer platinum drugs: evidence that cis-diamminedichloroplatinum (II) and cis-diammine(1,1-cyclobutanedicarboxylate) platinum (II) differ only in the kinetics of their interaction with DNA. Cancer Res 46:1972–1979

    PubMed  CAS  Google Scholar 

  16. Meyn RE, Corry PM, Fletcher SE, et al (1980) Thermal enhancement of DNA damage in mammalian cells treated with cis-diamminedichloroplatinum ( II ). Cancer Res 40: 1136–1139

    PubMed  CAS  Google Scholar 

  17. Ohtsubo T, Chang SW, Tsuji K, et al (1990) Effects of cisdiamminedichloroplatinum (CDDP) and cis-diammine(1,1-cyclobutanedicarboxylate) platinum ( CBDCA) on thermotolerance development and thermosesitivity of the thermotolerant cells. Int J Hyperthermia 6: 1031–1039

    Article  PubMed  CAS  Google Scholar 

  18. Ohtsubo T, Saito H, Matsumoto H, et al (1997) In vitro effects of hyperthermia combined with cisplatin or peplomycin on the human maxillary carcinoma cell line IMC-2. Int J Hyperthermia 13: 59–67

    Article  PubMed  CAS  Google Scholar 

  19. Neilan BA, Henle KJ, Nagle WA, et al (1986) Cytotoxicity of hyperthermia combined with bleomycin or cis-platinum in cultured RIF cells: modification by thermotolerance and by polyhydroxy compounds. Cancer Res 46: 2245–2247

    PubMed  CAS  Google Scholar 

  20. Carper SW, Duffy JJ, Gerner EW (1987) Heat shock proteins in thermotolerance and other cellular processes. Cancer Res 47: 5249–5255

    PubMed  CAS  Google Scholar 

  21. Liu RY, Li X, Li L, et al (1992) Expression of human hsp70 in rat fibroblasts enhances cell survival and facilitates recovery from translational and transcriptional inhibition following heat shock. Cancer Res 52: 3667–3673

    PubMed  CAS  Google Scholar 

  22. Ohtsuka K,Utsumi KR, Kaneda T, et al (1993) Effect of ATP on the release of hsp70 and hsp40 from the nucleus in heat-shocked Hela cells. Exp Cell Res 209: 357–366

    Article  PubMed  CAS  Google Scholar 

  23. Matsumoto H, Hayashi S, Shioura H, et al (1998) Suppression of heat-induced HSF activation by CDDP in human glioblastoma cells. Int J Radiat Oncol Biol Phys 41: 915–920

    Article  PubMed  CAS  Google Scholar 

  24. Terasima T, Yasukawa M, Umezawa H (1970) Breaks and rejoining of DNA in cultured mammalian cells treated with bleomycin. Gann 61: 513–516

    PubMed  CAS  Google Scholar 

  25. Braun J, Hahn GM (1975) Enhanced cell killing by bleomycin and 43°C hyperthermia and the inhibition of recovery from potentially lethal damage. Cancer Res 35: 2921–2927

    PubMed  CAS  Google Scholar 

  26. Mizuno S, Ishida A (1981) Potentiation of bleomycin cytotoxicity toward cultured mouse cells by hyperthermia and ethanol Gann 72: 395–402

    CAS  Google Scholar 

  27. Shioura H, Hayashi S, Matsumoto H, et al (1997) The effects of combined treatments with low hyperthermia and bleomycin on survivals of murine L cells. J Exp Clin Cancer Res 16: 147–152

    PubMed  CAS  Google Scholar 

  28. Kano E, Furukawa-Furuya M, Nitta K, et al (1988) Sensitivities of bleomycin-resistant variant cells enhanced by 40°C hyperthermia in vitro. Int J Hyperthermia 4: 547–553

    Article  PubMed  CAS  Google Scholar 

  29. Blum RH, Carter SK (1974) Adriamycin: a new anticancer drug with significant clinical activity. Ann Intern Med 80: 249–259

    PubMed  CAS  Google Scholar 

  30. Bachur NR, Gordon SL, Gee MV (1978) A general mechanism for microsomal activation of quinone anticancer agents to free radicals. Cancer Res 38: 1745–1752

    PubMed  CAS  Google Scholar 

  31. Tewey KM, Chen GL, Nelson EM, et al (1984) Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259: 9182–9187

    PubMed  CAS  Google Scholar 

  32. Dahl O (1983) Hyperthermia potentiation of doxorubicin and 4’-epidoxorubicin in a transplantable neurogenic rat 9: 203–207

    CAS  Google Scholar 

  33. Overgaard J (1976) Combined adriamycin and hyper thermia treatment of a murine mammary carcinoma in vivo. Cancer Res 36: 3077–3081

    PubMed  CAS  Google Scholar 

  34. Magin RL (1983) Hyperthermia and chemotherapy: when will they be used in the clinical treatment of cancer? Eur J Cancer Clin Oncol 19: 1655–1658

    Article  PubMed  CAS  Google Scholar 

  35. Landry J, Chretein P, Lamsert H, et al (1989) Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. J Cell Biol 109: 7–15

    Article  PubMed  CAS  Google Scholar 

  36. Huber SA (1992) Heat-shock protein induction in adri amycin and picornavirus-infected cardiocytes. Lab Invest 67: 218–224

    PubMed  CAS  Google Scholar 

  37. Clerget M, Polla BS (1990) Erythrophagocytosis induces heat shock protein synthesis by human monocytes-macrophages. Proc Natl Acad Sci USA 87: 1081–1085

    Article  PubMed  CAS  Google Scholar 

  38. Henle KJ, Dethlefsen L (1978) Heat fractionation and thermotolerance: a review. Cancer Res 38: 1843–1851

    PubMed  CAS  Google Scholar 

  39. Kano E, Furuya M, Nitta K, et al (1988) Effects of anti-tumor drugs on thermotolerance development and ther- mosensitivity of thermotolerant cells. In: Kano E (ed) Current research in hyperthermia oncology. Academic Press, New York, pp 109–125

    Google Scholar 

  40. Wallner KE, Li GC (1987) Effect of drug exposure duration and sequencing on hyperthermic potentiation of mitomycin-C and cisplatin. Cancer Res 47: 493–495

    PubMed  CAS  Google Scholar 

  41. Tanaka N, Yamagishi H, Ohkawa T, et al (1998) Effect of benzaldehyde on regrowth time of transplanted murine N-fibrosarcoma cells after the combined treatment with hyperthermia. Jpn J Hyperthermic Oncol14: 131–138

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Japan

About this chapter

Cite this chapter

Ohtsubo, T. et al. (2001). Enhancement of Cytotoxic Effects of Chemotherapeutic Agents with Hyperthermia In Vitro. In: Kosaka, M., Sugahara, T., Schmidt, K.L., Simon, E. (eds) Thermotherapy for Neoplasia, Inflammation, and Pain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-67035-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-67035-3_51

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-67037-7

  • Online ISBN: 978-4-431-67035-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation