Outcomes from Synthetic Molecular Sequences in Materials Science

  • Chapter
  • First Online:
Synthetic Molecular Sequences in Materials Science

Part of the book series: NIMS Monographs ((NIMSM))

  • 131 Accesses

Abstract

Although it is basically regarded to be in a preliminary stage, outcomes from synthetic molecular sequences have already been observed in both polymeric and discrete systems. Examples include improvement of the performance of charge-carrier transport materials by optimizing the sequences at the molecular and supramolecular levels, fabrication of porous materials with superior properties by sophisticatedly controlling the domain segregation in the assemblies of block sequences, and switching of physical properties of polymers by taking advantage of their dynamic nature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee D-W, Kim T, Park I-S, Huang Z, Lee M (2012) Multivalent nanofibers of a controlled length: regulation of bacterial cell agglutination. J Am Chem Soc 134:14722–14725

    Article  CAS  Google Scholar 

  2. Yu H, Li S, Schwieter KE, Liu Y, Sun B, Moore JS (2020) Charge transport in sequence-defined conjugated oligomers. J Am Chem Soc 142:4852–4861

    Article  CAS  Google Scholar 

  3. Lokey RS, Iverson BL (1995) Synthetic molecules that fold into a pleated secondary structure in solution. Nature 375:303–305

    Article  CAS  Google Scholar 

  4. Selkoe DJ (2003) Folding proteins in fatal ways. Nature 426:900–904

    Article  CAS  Google Scholar 

  5. Lautrette G, Wicher B, Kauffmann B, Ferrand Y, Huc I (2016) Iterative evolution of an abiotic foldamer sequence for the recognition of guest molecules with atomic precision. J Am Chem Soc 138:10314–10322

    Article  CAS  Google Scholar 

  6. Madhu M, Ramakrishnan R, Vijay V, Hariharan M (2021) Free charge carriers in homo-sorted π-stacks of donor–acceptor conjugates. Chem Rev 121:8234–8284

    Article  CAS  Google Scholar 

  7. Würthner F, Chen Z, Hoeben FJM, Osswald P, You C-C, Jonkheijm P, van Herrikhuyzen J, Schenning APHJ, van der Schoot PPAM, Meijer EW, Beckers EHA, Meskers SCJ, Janssen RAJ (2004) Supramolecular p–n-heterojunctions by co-self-organization of oligo(p-phenylene vinylene) and perylene bisimide dyes. J Am Chem Soc 126:10611–10618

    Article  Google Scholar 

  8. Sato S, Takei T, Matsushita Y, Yasuda T, Kojima T, Kawano M, Ohnuma M, Tashiro K (2015) Coassembly-directed fabrication of an exfoliated form of alternating multilayers composed of a self-assembled organoplatinum(II) complex–fullerene dyad. Inorg Chem 54:11581–11583

    Article  CAS  Google Scholar 

  9. Hizume Y, Tashiro K, Charvet R, Yamamoto Y, Saeki A, Seki S, Aida T (2010) Chiroselective assembly of a chiral porphyrin-fullerene dyad: photoconductive nanofiber with a top-class ambipolar charge-carrier mobility. J Am Chem Soc 132:6628–6629

    Article  CAS  Google Scholar 

  10. An G, Yan P, Sun J, Li Y, Yao X, Li G (2015) The racemate-to-homochiral approach to crystal engineering via chiral symmetry breaking. Cryst Eng Comm 17:4421–4433

    Article  CAS  Google Scholar 

  11. Tashiro K, Takei T, Fracaroli AM, Ohtsu H, Kawano M, Hashizume D (2022) Gelation of a π-decorated glutamate as a homochiral selective self-assembly to emerge macroscopic chiral symmetry breaking. Chem Asian J e202200230

    Google Scholar 

  12. Coquerel G (2007) Preferential crystallization. Top Curr Chem 269:1–51

    CAS  Google Scholar 

  13. Tian Y, Watanabe K, Kong X, Abe J, Iyoda T (2002) Synthesis, nanostructures, and functionality of amphiphilic liquid crystalline block copolymers with azobenzene moieties. Macromolecules 35:3739–3747

    Article  CAS  Google Scholar 

  14. Chen A, Komura M, Kamata K, Iyoda T (2008) Highly ordered arrays of mesoporous silica nanorods with tunable aspect ratios from block copolymer thin films. Adv Mater 20:763–767

    Article  CAS  Google Scholar 

  15. Sommer M, Huettner S, Thelakkat M (2010) Donor–acceptor block copolymers for photovoltaic applications. J Mater Chem 20:10788–10797

    Article  CAS  Google Scholar 

  16. Ren L, Wang W, Mallouk TE (2018) Two forces are better than one: combining chemical and acoustic propulsion for enhanced micromotor functionality. Acc Chem Res 51:1948–1956

    Article  CAS  Google Scholar 

  17. Lipatova TE, Kosyanchuk LF, Shilov VV (1985) Complex formation between cyclic urethane and zinc chloride: its effect on polyrotaxane synthesis. J Macromol Sci A 22:361–372

    Article  Google Scholar 

  18. Uenuma S, Maeda R, Kato K, Mayumi K, Yokoyama H, Ito K (2019) Drastic change of mechanical properties of polyrotaxane bulk: ABA−BAB sequence change depending on ring position. ACS Macro Lett 8:140–144

    Article  CAS  Google Scholar 

  19. Liu Y, Sheri M, Cole MD, Emrick T, Russell TP (2018) Combining fullerenes and zwitterions in non-conjugated polymer interlayers to raise solar cell efficiency. Angew Chem Int Ed 57:9675–9678

    Article  CAS  Google Scholar 

  20. Deng H, Doonan CJ, Furukawa H, Ferreira RB, Towne J, Knobler CB, Wang B, Yaghi OM (2010) Multiple functional groups of varying ratios in metal-organic frameworks. Science 327:846–850

    Article  CAS  Google Scholar 

  21. Anderson PW (1972) More is different. Science 177:393–396

    Article  CAS  Google Scholar 

  22. Kong X, Deng H, Yan F, Kim J, Swisher JA, Smit B, Yaghi OM, Reimer JA (2013) Map** of functional groups in metal-organic frameworks. Science 341:882–885

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Tashiro .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 National Institute for Materials Science, Japan

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tashiro, K. (2023). Outcomes from Synthetic Molecular Sequences in Materials Science. In: Synthetic Molecular Sequences in Materials Science. NIMS Monographs. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56933-6_4

Download citation

Publish with us

Policies and ethics

Navigation