Recent Developments in Designing Compact Biological Photoprobes

  • Chapter
  • First Online:
Photoaffinity Labeling for Structural Probing Within Protein

Abstract

Identification and characterization of small molecule–protein interactions are common needs for both basic science and drug discovery programs. Photoaffinity probe molecules (photoprobes) have been used for more than 40 years to label the targets of small molecules, but identification of those targets has remained challenging. Recently, renewed interest in the use of photoprobes has been spurred by the advent of modern mass spectrometry methods that facilitate target identification. In addition, development of new chemoselective labeling reactions (i.e., “click chemistry” approaches) now enables facile purification of photocrosslinked complexes for analysis. Photoprobe technology is being applied for a variety of purposes, including identifying the direct binding partner(s) of a small molecule, obtaining information about the nature of the ligand binding site in the absence of a three-dimensional structure, determining whether ligand binding occurs through a primary or allosteric site, and investigating the specificity determinants of ligand binding. In this chapter, we discuss a selection of compact photoprobes that have been reported in the past 10 years. The chapter describes photoprobes containing each of the three common photoactivatable functional groups—aryl azide, benzophenone, and diazirine. We highlight the molecular design strategies that have yielded functional photoprobes, including compact construction, choice of photoactivatable functional groups, use of tags for chemoselective labeling, and linker design. We conclude by discussing remaining challenges that stand in the way of widespread adoption of photoprobe reagents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Banala AK, Zhang P, Plenge P, Cyriac G, Kopajtic T, Katz JL, Loland CJ, Newman AH (2013) Design and synthesis of 1-(3-(dimethylamino)propyl)-1-(4-fluorophenyl)-1,3-dihydroisobenzofuran-5-carbonitrile (citalopram) analogues as novel probes for the serotonin transporter S1 and S2 binding sites. J Med Chem 56(23):9709–9724. doi:10.1021/jm4014136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Hajipour AR, Sievert MK, Arbabian M, Ruoho AE (2007) Characterization of the cocaine binding site on the sigma-1 receptor. Biochemistry 46(11):3532–3542. doi:10.1021/bi061727o

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Yin YI, Yang G, Tarassishin L, Li YM (2004) Stereoselective synthesis of photoreactive peptidomimetic gamma-secretase inhibitors. J Org Chem 69(21):7344–7347. doi:10.1021/jo0486948

    Article  CAS  PubMed  Google Scholar 

  • Cisar JS, Cravatt BF (2012) Fully functionalized small-molecule probes for integrated phenotypic screening and target identification. J Am Chem Soc 134(25):10385–10388. doi:10.1021/ja304213w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coleman JA, Green EM, Gouaux E (2016) X-ray structures and mechanism of the human serotonin transporter. Nature 532(7599):334–339. doi:10.1038/nature17629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti E, Stachelhaus T, Marahiel MA, Brick P (1997) Structural basis for the activation of phenylalanine in the non-ribosomal biosynthesis of gramicidin S. EMBO J 16(14):4174–4183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crump CJ, Fish BA, Castro SV, Chau DM, Gertsik N, Ahn K, Stiff C, Pozdnyakov N, Bales KR, Johnson DS, Li YM (2011) Piperidine acetic acid based gamma-secretase modulators directly bind to Presenilin-1. ACS Chem Nerosci 2(12):705–710. doi:10.1021/cn200098p

    Article  CAS  Google Scholar 

  • Duckworth BP, Wilson DJ, Nelson KM, Boshoff HI, Barry CE 3rd, Aldrich CC (2012) Development of a selective activity-based probe for adenylating enzymes: profiling MbtA involved in siderophore biosynthesis from Mycobacterium tuberculosis. ACS Chem Biol 7(10):1653–1658. doi:10.1021/cb300112x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eirich J, Orth R, Sieber SA (2011) Unraveling the protein targets of vancomycin in living S. aureus and E. faecalis cells. J Am Chem Soc 133(31):12144–12153. doi:10.1021/ja2039979

    Article  CAS  PubMed  Google Scholar 

  • Ferreras JA, Ryu JS, Di Lello F, Tan DS, Quadri LEN (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1(1):29–32. doi:10.1038/nchembio706

    Article  CAS  PubMed  Google Scholar 

  • Finking R, Neumuller A, Solsbacher J, Konz D, Kretzschmar G, Schweitzer M, Krumm T, Marahiel MA (2003) Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. Chembiochem 4(9):903–906. doi:10.1002/cbic.200300666

    Article  CAS  PubMed  Google Scholar 

  • Fischer JJ, Dalhoff C, Schrey AK, Graebner OY, Michaelis S, Andrich K, Glinski M, Kroll F, Sefkow M, Dreger M, Koester H (2011) Dasatinib, imatinib and staurosporine capture compounds—complementary tools for the profiling of kinases by Capture Compound Mass Spectrometry (CCMS). J Proteomics 75(1):160–168. doi:10.1016/j.jprot.2011.05.035

    Article  CAS  PubMed  Google Scholar 

  • Fontanilla D, Hajipour AR, Pal A, Chu UB, Arbabian M, Ruoho AE (2008) Probing the steroid binding domain-like I (SBDLI) of the sigma-1 receptor binding site using N-substituted photoaffinity labels. Biochemistry 47(27):7205–7217. doi:10.1021/bi800564j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillespie EJ, Ho CL, Balaji K, Clemens DL, Deng G, Wang YE, Elsaesser HJ, Tamilselvam B, Gargi A, Dixon SD, France B, Chamberlain BT, Blanke SR, Cheng G, de la Torre JC, Brooks DG, Jung ME, Colicelli J, Damoiseaux R, Bradley KA (2013) Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses. Proc Natl Acad Sci U S A 110(50):E4904–E4912. doi:10.1073/pnas.1302334110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hett EC, Xu H, Geoghegan KF, Gopalsamy A, Kyne RE Jr, Menard CA, Narayanan A, Parikh MD, Liu S, Roberts L, Robinson RP, Tones MA, Jones LH (2015) Rational targeting of active-site tyrosine residues using sulfonyl fluoride probes. ACS Chem Biol 10(4):1094–1098. doi:10.1021/cb5009475

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa F, Konno S, Suzuki T, Dohmae N, Kakeya H (2015a) Profiling nonribosomal peptide synthetase activities using chemical proteomic probes for adenylation domains. ACS Chem Biol 10(9):1989–1997. doi:10.1021/acschembio.5b00097

    Article  CAS  PubMed  Google Scholar 

  • Ishikawa F, Suzuki T, Dohmae N, Kakeya H (2015b) A multiple-labeling strategy for nonribosomal peptide synthetases using active-site-directed proteomic probes for adenylation domains. Chembiochem 16(18):2590–2594. doi:10.1002/cbic.201500481

    Article  CAS  PubMed  Google Scholar 

  • Jung ME, Chamberlain BT, Ho CL, Gillespie EJ, Bradley KA (2014) Structure-activity relationship of semicarbazone EGA furnishes photoaffinity inhibitors of anthrax toxin cellular entry. ACS Med Chem Lett 5(4):363–367. doi:10.1021/ml400486k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kahoun JR, Ruoho AE (1992) (125I)iodoazidococaine, a photoaffinity label for the haloperidol-sensitive sigma receptor. Proc Natl Acad Sci U S A 89(4):1393–1397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kambe T, Correia BE, Niphakis MJ, Cravatt BF (2014) Map** the protein interaction landscape for fully functionalized small-molecule probes in human cells. J Am Chem Soc 136(30):10777–10782. doi:10.1021/ja505517t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konno S, Ishikawa F, Suzuki T, Dohmae N, Burkart MD, Kakeya H (2015) Active site-directed proteomic probes for adenylation domains in nonribosomal peptide synthetases. Chem Commun 51(12):2262–2265. doi:10.1039/c4cc09412c

    Article  CAS  Google Scholar 

  • Koteva K, Hong HJ, Wang XD, Nazi I, Hughes D, Naldrett MJ, Buttner MJ, Wright GD (2010) A vancomycin photoprobe identifies the histidine kinase VanSsc as a vancomycin receptor. Nat Chem Biol 6(5):327–329. doi:10.1038/nchembio.350

    Article  CAS  PubMed  Google Scholar 

  • Kumar V, Yarravarapu N, Lapinsky DJ, Perley D, Felts B, Tomlinson MJ, Vaughan RA, Henry LK, Lever JR, Newman AH (2015) Novel Azido-Iodo Photoaffinity Ligands for the Human Serotonin Transporter Based on the Selective Serotonin Reuptake Inhibitor (S)-Citalopram. J Med Chem 58(14):5609–5619. doi:10.1021/acs.jmedchem.5b00682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapinsky DJ, Velagaleti R, Yarravarapu N, Liu Y, Huang Y, Surratt CK, Lever JR, Foster JD, Acharya R, Vaughan RA, Deutsch HM (2011) Azido-iodo-N-benzyl derivatives of threo-methylphenidate (Ritalin, Concerta): Rational design, synthesis, pharmacological evaluation, and dopamine transporter photoaffinity labeling. Bioorg Med Chem 19(1):504–512. doi:10.1016/j.bmc.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  • Lapinsky DJ, Yarravarapu N, Nolan TL, Surratt CK, Lever JR, Tomlinson M, Vaughan RA, Deutsch HM (2012) Evolution of a compact photoprobe for the dopamine transporter based on (+/−)-threo-methylphenidate. ACS Med Chem Lett 3(5):378–382. doi:10.1021/ml3000098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Kapoor TM (2010) Approach to profile proteins that recognize post-translationally modified histone “tails”. J Am Chem Soc 132(8):2504–2505. doi:10.1021/ja909741q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li YM, Xu M, Lai MT, Huang Q, Castro JL, DiMuzio-Mower J, Harrison T, Lellis C, Nadin A, Neduvelil JG, Register RB, Sardana MK, Shearman MS, Smith AL, Shi XP, Yin KC, Shafer JA, Gardell SJ (2000) Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405(6787):689–694. doi:10.1038/35015085

    Article  CAS  PubMed  Google Scholar 

  • Li X, Foley EA, Molloy KR, Li Y, Chait BT, Kapoor TM (2012) Quantitative chemical proteomics approach to identify post-translational modification-mediated protein-protein interactions. J Am Chem Soc 134(4):1982–1985. doi:10.1021/ja210528v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Hao P, Li L, Tan CY, Cheng X, Chen GY, Sze SK, Shen HM, Yao SQ (2013) Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angewandte Chemie 52(33):8551–8556. doi:10.1002/anie.201300683

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Wang D, Li L, Pan S, Na Z, Tan CY, Yao SQ (2014) “Minimalist” cyclopropene-containing photo-cross-linkers suitable for live-cell imaging and affinity-based protein labeling. J Am Chem Soc 136(28):9990–9998. doi:10.1021/ja502780z

    Article  CAS  PubMed  Google Scholar 

  • MacKinnon AL, Garrison JL, Hegde RS, Taunton J (2007) Photo-leucine incorporation reveals the target of a cyclodepsipeptide inhibitor of cotranslational translocation. J Am Chem Soc 129(47):14560–14561. doi:10.1021/ja076250y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Meijden B, Robinson JA (2015) Synthesis of a polymyxin derivative for photolabeling studies in the gram-negative bacterium Escherichia coli. J Pept Sci 21(3):231–235. doi:10.1002/psc.2736

    Article  PubMed  Google Scholar 

  • Neres J, Labello NP, Somu RV, Boshoff HI, Wilson DJ, Vannada J, Chen L, Barry CE 3rd, Bennett EM, Aldrich CC (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5′-O-[N-(salicyl)sulfamoyl]adenosine. J Med Chem 51(17):5349–5370. doi:10.1021/jm800567v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pal A, Hajipour AR, Fontanilla D, Ramachandran S, Chu UB, Mavlyutov T, Ruoho AE (2007) Identification of regions of the sigma-1 receptor ligand binding site using a novel photoprobe. Mol Pharmacol 72(4):921–933. doi:10.1124/mol.107.038307

    Article  CAS  PubMed  Google Scholar 

  • Park J, Oh S, Park SB (2012) Discovery and target identification of an antiproliferative agent in live cells using fluorescence difference in two-dimensional gel electrophoresis. Angew Chem 51(22):5447–5451. doi:10.1002/anie.201200609

    Article  CAS  Google Scholar 

  • Pozdnyakov N, Murrey HE, Crump CJ, Pettersson M, Ballard TE, Am Ende CW, Ahn K, Li YM, Bales KR, Johnson DS (2013) gamma-Secretase modulator (GSM) photoaffinity probes reveal distinct allosteric binding sites on presenilin. J Biol Chem 288(14):9710–9720. doi:10.1074/jbc.M112.398602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranjitkar P, Perera BG, Swaney DL, Hari SB, Larson ET, Krishnamurty R, Merritt EA, Villen J, Maly DJ (2012) Affinity-based probes based on type II kinase inhibitors. J Am Chem Soc 134(46):19017–19025. doi:10.1021/ja306035v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez AC, Yu SH, Li B, Zegzouti H, Kohler JJ (2015) Enhanced transfer of a photocross-linking N-acetylglucosamine (GlcNAc) analog by an O-GlcNAc transferase mutant with converted substrate specificity. J Biol Chem 290(37):22638–22648. doi:10.1074/jbc.M115.667006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salisbury CM, Cravatt BF (2007) Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc Natl Acad Sci U S A 104(4):1171–1176. doi:10.1073/pnas.0608659104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt HR, Zheng S, Gurpinar E, Koehl A, Manglik A, Kruse AC (2016) Crystal structure of the human sigma1 receptor. Nature 532(7600):527–530. doi:10.1038/nature17391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Cheng X, Sze SK, Yao SQ (2011) Proteome profiling reveals potential cellular targets of staurosporine using a clickable cell-permeable probe. Chem Commun 47(40):11306–11308. doi:10.1039/c1cc14824a

    Article  CAS  Google Scholar 

  • Shi H, Zhang CJ, Chen GY, Yao SQ (2012) Cell-based proteome profiling of potential dasatinib targets by use of affinity-based probes. J Am Chem Soc 134(6):3001–3014. doi:10.1021/ja208518u

    Article  CAS  PubMed  Google Scholar 

  • Singh J, Salcius M, Liu SW, Staker BL, Mishra R, Thurmond J, Michaud G, Mattoon DR, Printen J, Christensen J, Bjornsson JM, Pollok BA, Kiledjian M, Stewart L, Jarecki J, Gurney ME (2008) DcpS as a therapeutic target for spinal muscular atrophy. ACS Chem Biol 3(11):711–722. doi:10.1021/cb800120t

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somu RV, Wilson DJ, Bennett EM, Boshoff HI, Celia L, Beck BJ, Barry CE, Aldrich CC (2006) Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain. J Med Chem 49(26):7623–7635. doi:10.1021/jm061068d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stachelhaus T, Mootz HD, Marahiel MA (1999) The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem Biol 6(8):493–505. doi:10.1016/S1074-5521(99)80082-9

    Article  CAS  PubMed  Google Scholar 

  • Theodoropoulos PC, et al (2016) Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase. Nat Chem Biol 12:218–225

    Google Scholar 

  • Wang KH, Penmatsa A, Gouaux E (2015) Neurotransmitter and psychostimulant recognition by the dopamine transporter. Nature 521(7552):322–327. doi:10.1038/nature14431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Hett EC, Gopalsamy A, Parikh MD, Geoghegan KF, Kyne RE Jr, Menard CA, Narayanan A, Robinson RP, Johnson DS, Tones MA, Jones LH (2015) A library approach to rapidly discover photoaffinity probes of the mRNA decap** scavenger enzyme DcpS. Mol Biosyst 11(10):2709–2712. doi:10.1039/c5mb00288e

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Yin YI, Chun J, Shelton CC, Ouerfelli O, Li YM (2009) Stereo-controlled synthesis of novel photoreactive gamma-secretase inhibitors. Bioorg Med Chem Lett 19(3):922–925. doi:10.1016/j.bmcl.2008.11.117

    Article  CAS  PubMed  Google Scholar 

  • Yang TP, Liu Z, Li XD (2015) Develo** diazirine-based chemical probes to identify histone modification ‘readers’ and ‘erasers’. Chem Sci 6(2):1011–1017. doi:10.1039/c4sc02328e

    Article  CAS  Google Scholar 

  • Yu SH, Boyce M, Wands AM, Bond MR, Bertozzi CR, Kohler JJ (2012) Metabolic labeling enables selective photocrosslinking of O-GlcNAc-modified proteins to their binding partners. Proc Natl Acad Sci U S A 109(13):4834–4839. doi:10.1073/pnas.1114356109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer J. Kohler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Wands, A.M., Kohler, J.J. (2017). Recent Developments in Designing Compact Biological Photoprobes. In: Hatanaka, Y., Hashimoto, M. (eds) Photoaffinity Labeling for Structural Probing Within Protein. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56569-7_3

Download citation

Publish with us

Policies and ethics

Navigation