Development of Full-Thickness Human Skin Equivalents with Blood and Lymph-like Capillary Networks by Cell Coating Technology

  • Chapter
  • First Online:
Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds

Abstract

We developed a human skin equivalent (HSE) containing blood and lymph-like capillary networks using a cell-coating technique. This technique is a rapid fabrication technology of three-dimensional cellular constructs by cell surface coating using layer-by-layer assembled nanofilms of extracellular matrices. The thickness of a dermis consisting of normal human dermal fibroblast was easily controlled from approximately 5–100 μm by altering the seeded cell number. Keratinocytes as an epidermis showed homogeneous differentiation on the surface of the dermis by lifting to air-liquid interface, and immunological staining represented distinct four layers, stratum basale, spinosum, granulosum, and corneum. Interestingly, the measurement of transepithelial electrical resistance (TEER) indicated prolongation of the daily reached maximum value of TEER with an increase in the numbers of dermis layers. HSEs with six layers of dermis revealed the longest period maintained, over 500 Ω cm2 of TEER. The co-sandwich culture of human umbilical vein endothelial cells and normal human dermal lymphatic microvascular endothelial cells within an eight-layered dermis showed in vitro co-network formation of individual blood and lymph-like capillaries inside the dermis. This is the first report on homogeneous full-thickness HSEs with blood and lymph capillary networks that will be useful for biomedical and pharmaceutical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. MacNeil S (2007) Progress and opportunities for tissue-engineered skin. Nature 445:874–880

    Article  CAS  PubMed  Google Scholar 

  2. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344

    Article  CAS  PubMed  Google Scholar 

  3. Bell E, Ehrlich HP, Buttle DJ, Nakatsuji T (1981) Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211:1052–1054

    Article  CAS  PubMed  Google Scholar 

  4. Eaglstein WH, Falanga V (1998) Tissue engineering and the development of Apligraf a human skin equivalent. Adv Wound Care 11:1–8

    CAS  PubMed  Google Scholar 

  5. Yang L, Shirakata Y, Tokumaru S, **uju D, Tohyama M, Hanakawa Y et al (2009) Living skin equivalents constructed using human amnions as a matrix. J Dermatol Sci 56:188–195

    Article  CAS  PubMed  Google Scholar 

  6. Groeber F, Holeiter M, Hampel M, Hinderer S, Schenke-Layland K (2011) Skin tissue engineering–in vivo and in vitro applications. Adv Drug Deliv Rev 128:352–366

    Article  Google Scholar 

  7. Sun T, Jackson S, Haycock JW, MacNeil S (2006) Culture of skin cells in 3D rather than 2D improves their ability to survive exposure to cytotoxic agents. J Biotechnol 122:372–381

    Article  CAS  PubMed  Google Scholar 

  8. Roguet R (1999) Use of skin cell cultures for in vitro assessment of corrosion and cutaneous irritancy. Cell Biol Toxicol 15:63–75

    Article  CAS  PubMed  Google Scholar 

  9. Ponec M (2002) Skin constructs for replacement of skin tissues for in vitro testing. Adv Drug Deliv Rev 54:S19–S30

    Article  CAS  PubMed  Google Scholar 

  10. Falanga V, Isaacs C, Paquette D, Downing G, Kouttabl N, Butmarc J et al (2002) Wounding of bioengineered skin: cellular and molecular aspects after injury. J Invest Dermatol 119:653–660

    Article  CAS  PubMed  Google Scholar 

  11. Lee DY, Cho KH (2005) The effects of epidermal keratinocytes and dermal fibroblasts on the formation of cutaneous basement membrane in three-dimensional culture systems. Arch Dermatol Res 296:296–302

    Article  PubMed  Google Scholar 

  12. Boehnke K, Mirancea N, Pavesio A, Eusenig NE, Boukamp P, Stark HJ (2007) Effects of fibroblasts and microenvironment on epidermal regeneration and tissue function in long-term skin equivalents. Eur J Cell Biol 86:731–746

    Article  CAS  PubMed  Google Scholar 

  13. Régnier M, Staquet MJ, Schmitt D, Schmidt R (1997) Investigation of Langerhans cells into a pigmented reconstructed human epidermis. J Invest Dermatol 109:510–512

    Article  PubMed  Google Scholar 

  14. Ouwehand K, Spiekstra SW, Saaijman T, Breetveld M, Scheper RJ, de Druijl TD et al (2012) CCL5 and CCl20 mediate immigration of Langerhans cells into epidermis of full thickness human skin equivalents. Eur J Cell Biol 91:765–773

    Article  CAS  PubMed  Google Scholar 

  15. Black AF, Berthod F, L’heureux N, Germain L, Auger FA (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12:1331–1340

    CAS  PubMed  Google Scholar 

  16. Auxenfans C, Lequeux C, Perrusel E, Mojallal A, Kinikoglu B, Damour O (2012) Adipose-derived stem cells (ASCs) as a source of endothelial cells in the reconstruction of endothelialized skin equivalents. J Tissue Eng Regen Med 6:512–518

    Article  CAS  PubMed  Google Scholar 

  17. Yang L, Shirakata Y, Shudou M, Dai X, Tokumaru S, Hirakawa S et al (2006) New skin-equivalent model from de-epithelialized amnion membrane. Cell Tissue Res 326:69–77

    Article  CAS  PubMed  Google Scholar 

  18. Nishiguchi A, Yoshida H, Matsusaki M, Akashi M (2011) Rapid construction of three-dimensional multilayered tissue with endothelial tube networks by the cell-accumulation technique. Adv Mater 23:3506–3510

    Article  CAS  PubMed  Google Scholar 

  19. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232–1237

    Article  CAS  Google Scholar 

  20. Matsusaki M, Ajiro H, Kida T, Serizawa T, Akashi M (2012) Layer-by-layer assembly through weak interactions and their biomedical applications. Adv Mater 24:454–474

    Article  CAS  PubMed  Google Scholar 

  21. Matsusaki M, Kadowaki K, Nakahara Y, Akashi M (2007) Fabrication of cellular multilayers with nanometer-sized extracellular matrix films. Angew Chem Int Ed 46:4689–4692

    Article  CAS  Google Scholar 

  22. Matsusaki M, Amemori S, Kaodwaki K, Akashi M (2011) Quantitative 3D analysis of nitric oxide diffusion in a 3D artery model using sensor particles. Angew Chem Int Ed 50:7557–7561

    Article  CAS  Google Scholar 

  23. Matsusaki M (2012) Development of three-dimensional tissue models based on hierarchical cell manipulation using nanofilms. Bull Chem Soc Jpn 85:401–414

    Article  CAS  Google Scholar 

  24. Shirakata Y, Ueno H, Hanakawa Y, Kameda K, Yamasaki K, Tokumaru S et al (2004) TGF-beta is not involved in early phase growth inhibition of keratinocytes by 1alpha,25 (OH) 2 vitamin D3. J Dermatol Sci 36:41–50

    Article  CAS  PubMed  Google Scholar 

  25. Shirakata Y, Tokumaru S, Yamasaki K, Sayama K, Hashimoto K (2003) So-called biological dressing effects of cultured epidermal sheets are mediated by the production of EGF family, TGF-beta and VEGF. J Dermatol Sci 32:209–215

    Article  CAS  PubMed  Google Scholar 

  26. Yang L, Shirakata Y, Tamai K, Dai X, Hanakawa Y, Tokumaru S et al (2005) Microbubble-enhanced ultrasound for gene transfer into living skin equivalents. J Dermatol Sci 40:105–114

    Article  CAS  PubMed  Google Scholar 

  27. Chetprayoon P, Kadowaki K, Matsusaki M, Akashi M (2013) Survival and structural evaluations of three—dimensional tissues fabricated by the hierarchical cell manipulation technique. Acta Biomater 9:4698–4706

    Article  CAS  PubMed  Google Scholar 

  28. Nishiguchi A, Matsusaki M, Asano Y, Shimoda H, Akashi M (2014) Effects of angiogenic factors and 3D-microenvironments on vascularization within sandwich cultures. Biomaterials 35:4739–4748

    Article  CAS  PubMed  Google Scholar 

  29. Wang X-N, McGovern N, Gunawan M, Richardson C, Windebank M, Siah T-W et al (2014) A three-dimensional atlas of human dermal leukocytes, lymphatics, and blood vessels. J Invest Dermatol 134:965–974

    Article  CAS  PubMed  Google Scholar 

  30. Hirakawa S, Brown LF, Kodama S, Paavonen K, Alitalo K, Detmar M (2007) VEGF-C-induced lymphangiogenesis in sentinel lymph nodes promotes tumor metastasis to distant sites. Blood 109:1010–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kadowaki K, Matsusaki M, Akashi M (2010) Three-dimensional constructs induce high cellular activity: structural stability and the specific production of proteins and cytokines. Biochem Biophys Res Commun 402:153–157

    Article  CAS  PubMed  Google Scholar 

  32. Karaman S, Detmar M (2014) Mechanisms of lymphatic metastasis. J Clin Invest 124:922–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Welner RS, Kincade PW (2007) Stem cell on patrol. Cell 131:842–844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported mainly by PRESTO-JST, and partly by a Grant-in-Aid for Scientific Research on Innovative Areas (21106514 and 26106717) from MEXT of Japan, The Noguchi Institute Fund, and by NEXT Program from JSPS (LR026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuru Akashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Matsusaki, M., Fujimoto, K., Shirakata, Y., Hirakawa, S., Hashimoto, K., Akashi, M. (2017). Development of Full-Thickness Human Skin Equivalents with Blood and Lymph-like Capillary Networks by Cell Coating Technology. In: Sugibayashi, K. (eds) Skin Permeation and Disposition of Therapeutic and Cosmeceutical Compounds. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56526-0_31

Download citation

Publish with us

Policies and ethics

Navigation