Comparison of Mechanical Quantities as Bone Remodeling Stimuli

  • Chapter
  • First Online:
Bone Adaptation

Part of the book series: Frontiers of Biomechanics ((FB,volume 2))

  • 570 Accesses

Abstract

In this chapter, different trabecular-level mechanical quantities are compared for determining their appropriateness as bone remodeling stimuli. Distribution functions of the mechanical quantities were evaluated by using digital image-based finite element models of rat vertebral bodies subject to physiological loading conditions. Strain energy density (SED) and von Mises equivalent stress were considered as local mechanical quantities, while SED integration and stress non-uniformity were considered as integral mechanical quantities. The analysis demonstrated that the mechanical quantities were non-uniformly distributed over the trabecular surface owing to the three-dimensionally complex trabecular structure. The distribution patterns of the four mechanical quantities were compared in terms of the skewness of their distribution functions. The results support the notion that the integral formalism, proposed for bone remodeling stimuli on the basis of the process of bone cells to sense mechanical stimuli, corresponds to trabecular structural adaptation to its mechanical environment.

This Chapter was adapted from Tsubota and Adachi (2006) with permission from The Japan Society of Mechanical Engineers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Adachi T, Tomita Y, Sakaue H, Tanaka M (1997) Simulation of trabecular surface remodeling based on local stress nonuniformity. JSME Int J C 40(4):782–792. https://doi.org/10.1299/jsmec.40.782

    Article  Google Scholar 

  • Adachi T, Tanaka M, Tomita Y (1998) Uniform stress state in bone structure with residual stress. J Biomech Eng 120(3):342–347. https://doi.org/10.1115/1.2798000

    Article  Google Scholar 

  • Burr DB (2002) Targeted and nontargeted remodeling. Bone 30(1):2–4

    Article  MathSciNet  Google Scholar 

  • Carter DR, Fyhrie DP, Whalen RT (1987) Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J Biomech 20(8):785–794

    Article  Google Scholar 

  • Cowin SC (1993) Bone stress adaptation models. J Biomech Eng 115(4B):528–533

    Article  Google Scholar 

  • Cowin SC, Hegedus DH (1976) Bone remodeling I: theory of adaptive elasticity. J Elast 6(3):313–326

    Article  MathSciNet  MATH  Google Scholar 

  • Donahue HJ (1998) Gap junctional intercellular communication in bone: a cellular basis for the mechanostat set point. Calcif Tissue Int 62(2):85–88

    Article  Google Scholar 

  • Fyhrie DP, Hoshaw SJ, Hamid MS, Hou FJ (2000) Shear stress distribution in the trabeculae of human vertebral bone. Ann Biomed Eng 28(10):1194–1199

    Article  Google Scholar 

  • Hughes TJR, Ferencz RM, Hallquist JO (1987) Large-scale Vectorized implicit calculations in solid mechanics on a Cray X-Mp/48 utilizing Ebe preconditioned conjugate gradients. Comput Method Appl M 61(2):215–248

    Article  MathSciNet  MATH  Google Scholar 

  • Huiskes R, Weinans H, Grootenboer HJ, Dalstra M, Fudala B, Slooff TJ (1987) Adaptive bone-remodeling theory applied to prosthetic-design analysis. J Biomech 20(11-12):1135–1150

    Article  Google Scholar 

  • Huiskes R, Ruimerman R, van Lenthe GH, Janssen JD (2000) Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787):704–706. https://doi.org/10.1038/35015116

    Article  Google Scholar 

  • Luo G, Cowin SC, Sadegh AM, Arramon YP (1995) Implementation of strain rate as a bone remodeling stimulus. J Biomech Eng 117(3):329–338

    Article  Google Scholar 

  • Mullender MG, Huiskes R (1995) Proposal for the regulatory mechanism of Wolff's law. J Orthop Res 13(4):503–512. https://doi.org/10.1002/jor.1100130405

    Article  Google Scholar 

  • Mullender MG, Huiskes R, Weinans H (1994) A physiological approach to the simulation of bone remodeling as a self-organizational control process. J Biomech 27(11):1389–1394

    Article  Google Scholar 

  • Mullender MG, van der Meer DD, Huiskes R, Lips P (1996) Osteocyte density changes in aging and osteoporosis. Bone 18(2):109–113

    Article  Google Scholar 

  • Mullender M, van Rietbergen B, Ruegsegger P, Huiskes R (1998) Effect of mechanical set point of bone cells on mechanical control of trabecular bone architecture. Bone 22(2):125–131

    Article  Google Scholar 

  • Ruimerman R, van Rietbergen B, Hilbers P, Huiskes R (2005) The effects of trabecular-bone loading variables on the surface signaling potential for bone remodeling and adaptation. Ann Biomed Eng 33(1):71–78

    Article  Google Scholar 

  • Sadegh AM, Luo GM, Cowin SC (1993) Bone ingrowth: an application of the boundary element method to bone remodeling at the implant interface. J Biomech 26(2):167–182

    Article  Google Scholar 

  • Tsuota K, Adachi T (2006) Simulation study on local and integral mechanical quantities at single trabecular level as candidates of remodeling stimuli. J Biomech Sci Eng 1(1):124–135. https://doi.org/10.1299/jbse.1.124

    Article  Google Scholar 

  • van Rietbergen B, Weinans H, Huiskes R, Odgaard A (1995) A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J Biomech 28(1):69–81

    Article  Google Scholar 

  • **a SL, Ferrier J (1992) Propagation of a calcium pulse between osteoblastic cells. Biochem Biophys Res Commun 186(3):1212–1219

    Article  Google Scholar 

  • Yeni YN, Hou FJ, Ciarelli T, Vashishth D, Fyhrie DP (2003) Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone. Ann Biomed Eng 31(6):726–732

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: A Remodeling Equilibrium Around Mean Stimulus

Appendix: A Remodeling Equilibrium Around Mean Stimulus

The rate of the trabecular surface movement \( \dot{M} \) was assumed to be a simple linear function of the mechanical stimulus S, as shown in Eq. (10.5). If C and S ref do not depend on time and are non-site specific, the extent of the net change in the total bone mass \( {\dot{M}}^{\mathrm{total}} \) is expressed by the rate coefficient C, the reference stimulus S ref, the mean stimulus \( \overline{S} \) in the trabecular bone region, and the total trabecular surface area ∫dA, as:

$$ {\displaystyle \begin{array}{l}{\dot{M}}^{\mathrm{total}}=\int \dot{M}\mathrm{d}A\\ {}\kern3em =\int C\left(S-{S}^{\mathrm{ref}}\right)\mathrm{d}A\\ {}\kern3em =C\left(\int S\mathrm{d}A-\int {S}^{\mathrm{ref}}\mathrm{d}A\right)\\ {}\kern3em =C\left(\overline{S}-{S}^{\mathrm{ref}}\right)\int \mathrm{d}A\kern1em \left(\because \int S\mathrm{d}A=\overline{S}\int \mathrm{d}A\right)\end{array}} $$
(10.8)

Because \( {\dot{M}}^{\mathrm{total}} \) should be zero in a normal trabecular bone in the remodeling equilibrium , Eq. (10.8) indicates that the reference stimulus S ref is equivalent to the mean stimulus \( \overline{S} \) of a normal trabecular bone.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Japan KK

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kameo, Y., Tsubota, Ki., Adachi, T. (2018). Comparison of Mechanical Quantities as Bone Remodeling Stimuli. In: Bone Adaptation. Frontiers of Biomechanics, vol 2. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56514-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-56514-7_10

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-56512-3

  • Online ISBN: 978-4-431-56514-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation