Functional Division Among Prefrontal Cortical Areas in an Analog of Wisconsin Card Sorting Test

  • Chapter
  • First Online:
The Prefrontal Cortex as an Executive, Emotional, and Social Brain

Abstract

The primate prefrontal cortex (PFC) is composed of several different areas, which have different anatomical connections with other brain structures. We have studied the functional divisions among the prefrontal areas by combining lesion-behavioral experiments with single-cell recordings in intact monkeys using an analog of the Wisconsin Card Sorting Test as a behavioral paradigm. Our results suggest that the PFC is composed of multiple functional units, each of which plays different elementary roles in the performance of cognitively demanding tasks. These elementary functions are mutually dependent on one another, and then the overall performance of the PFC goes beyond a mere sum of the elementary functions. We have also obtained results suggesting that the control of cognitively demanding tasks depends on the posterior parts of the PFC when they are well learned. The most anterior part of PFC, the frontopolar cortex, starts to play another role, i.e., exploration of other possibilities than those pursued by the current task. By having this function of the frontopolar cortex, primates may have increased the flexibility and adaptability of their behaviors in changing environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Assad WF, Rainer G, Miller EK (2000) Task-specific neural activity in the primate prefrontal cortex. J Neurophysiol 84:451–459

    Google Scholar 

  • Barbas H (2000) Connections underlying the synthesis of cognition, memory, and emotion in primate prefrontal cortices. Brain Res Bull 52:319–330

    Article  CAS  PubMed  Google Scholar 

  • Barbas H, Pandya DN (1989) Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286:353–375

    Google Scholar 

  • Berg EA (1948) A simple objective technique for measuring flexibility in thinking. J Gen Psychol 39:15–22

    Article  CAS  PubMed  Google Scholar 

  • Boschin EA, Piekema C, Buckley MJ (2015) Essential functions of primate frontopolar cortex in cognition. Proc Natl Acad Sci U S A 112:E1020–E1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckley MJ, Mansouri FA, Hoda H, Mahboubi M, Browning PG, Kwok SC, Phillips A, Tanaka K (2009) Dissociable components of rule-guided behavior depend on distinct medial and prefrontal regions. Science 325:52–58

    Article  CAS  PubMed  Google Scholar 

  • Burman KJ, Reser DH, Yu HH, Rosa MG (2011) Cortical input to the frontal pole of the marmoset monkey. Cereb Cortex 21:1712–1737

    Article  PubMed  Google Scholar 

  • Chau BK, Sallet GK, Papageorgiou GK, Noonan MP, Bell AH, Walton ME, Rushworth MF (2015) Contrasting roles of orbitofrontal cortex and amygdala in credit assignment and learning in macaques. Neuron 87:1106–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuster JM (2008) The prefrontal cortex. Academic Press, London

    Google Scholar 

  • Goldman-Rakic PS (1987) Circuitry of primate prefrontal cortex and regulation of behavior by representation memory. In: Plum F (ed) Handbook of physiology, the nervous system, higher functions of the brain, section I, vol V. American Physiological Society, Bethesda, pp 373–417

    Google Scholar 

  • Goldman-Rakic PS (1996) The prefrontal landscape: implications of functional architecture for understanding human mentation and the central executive. Phil Trans R Soc London B351:1445–1453

    Article  Google Scholar 

  • Heaton RK (1981) A manual for the Wisconsin Card Sorting Test. Psychological Assessment Resources, Odessa

    Google Scholar 

  • Iversen SD, Mishkin M (1970) Perseverative interference in monkeys following selective lesions of the inferior prefrontal convexity. Exp Brain Res 11:376–386

    Article  CAS  PubMed  Google Scholar 

  • Kuwabara M, Mansouri FA, Buckley MJ, Tanaka K (2014) Cognitive control functions of anterior cingulate cortex in macaque monkeys performing a Wisconsin Card Sorting Test analog. J Neurosci 34:7531–7547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri FA, Tanaka K (2002) Behavioral evidence for working memory of sensory dimension in macaque monkeys. Behav Brain Res 136:415–426

    Article  PubMed  Google Scholar 

  • Mansouri FA, Matsumoto K, Tanaka K (2006) Prefrontal cell activities related to monkeys’ success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog. J Neurosci 26:2745–2756

    Article  CAS  PubMed  Google Scholar 

  • Mansouri FA, Buckley MJ, Tanaka K (2007) Mnemonic function of lateral prefrontal cortex in conflict-induced behavioral adjustment. Science 318:987–990

    Article  CAS  PubMed  Google Scholar 

  • Mansouri FA, Tanaka K, Buckley MJ (2009) Conflict-induced behavioural adjustment: a clue to the executive functions of prefrontal cortex. Nat Rev Neurosci 10:141–152

    Article  CAS  PubMed  Google Scholar 

  • Mansouri FA, Buckley MJ, Tanaka K (2014) The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment. J Neurosci 34:11016–11031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri FA, Buckley MJ, Mahboubi M, Tanaka K (2015a) Behavioral consequences of selective damage to frontal pole and posterior cingulate cortices. Proc Natl Acad Sci U S A 112:E3940–E3949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansouri FA, Rosa M, Atapour N (2015b) Short-term memory in the service of executive control functions. Front Syst Neurosci 9:166

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsumoto K, Suzuki W, Tanaka K (2003) Neuronal correlates of goal-based motor selection in the prefrontal cortex. Science 301:229–232

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto M, Matsumoto K, Abe H, Tanaka K (2007) Medial prefrontal cell activity signaling prediction errors of action values. Nat Neurosci 10:647–656

    Article  CAS  PubMed  Google Scholar 

  • Meunier M, Bachevalier J, Mishkin M (1997) Effects of orbital frontal and anterior cingulate lesions on object and spatial memory in rhesus monkeys. Neuropsychologia 35:999–1015

    Article  CAS  PubMed  Google Scholar 

  • Miller EK, Erickson CA, Desimone R (1996) Neural mechanisms of visual working memory in prefrontal cortex. J Neurosci 16:5154–5167

    CAS  PubMed  Google Scholar 

  • Milner B (1963) Effects of different brain lesions on card sorting: the role of frontal lobes. Arch Neurol 9:90–100

    Article  Google Scholar 

  • Milner B (1995) Aspects of human frontal lobe function. Adv Neurol 66:67–81

    CAS  PubMed  Google Scholar 

  • Ongür D, Price JL (2000) The organization of networks within the orbital and medial prefrontal cortex of rats, monkeys and humans. Cereb Cortex 10:206–219

    Article  PubMed  Google Scholar 

  • Passingham R (1972) Non-reversal shifts after selective prefrontal ablations in monkeys (Macaca mulatta). Brain Res 92:89–102

    Article  Google Scholar 

  • Petrides M, Pandya DN (1994) Comparative architectonic analysis of the human and the macaque frontal cortex. In: Boeller F, Grafman J (eds) Handbook of Neuropsychology. Elsevier, Amsterdam, pp 17–58

    Google Scholar 

  • Petrides M, Pandya DN (2007) Efferent association pathways from the rostral prefrontal cortex in the macaque monkey. J Neurosci 24:11573–11586

    Article  Google Scholar 

  • Rao SC, Rainer G, Miller EK (1997) Integration of what and where in the primate prefrontal cortex. Science 276:821–824

    Article  CAS  PubMed  Google Scholar 

  • Roberts AC, Robbins TW, Everitt BJ (1988) The effects of intradimensional and extradimensional shifts on visual discrimination learning in humans and non-human primates. Q J Exp Psychol 40:321–341

    CAS  Google Scholar 

  • Rowe JB, Sakai K, Lund TE, Ramsøy T, Christensen MS, Baare WF, Paulson OB, Passingham RE (2007) Is the prefrontal cortex necessary for establishing cognitive sets? J Neurosci 28:13303–13310

    Article  Google Scholar 

  • Rudebeck PH, Behrens TE, Kennerley SW, Baxter MG, Buckley MJ, Walton ME, Rushworth MF (2008) Frontal cortex subregions play distinct roles in choices between actions and stimuli. J Neurosci 28:13775–13785

    Article  CAS  PubMed  Google Scholar 

  • Rudebeck PH, Saunders RC, Prescott AT, Chau LS, Murray EA (2013) Prefrontal mechanisms of behavioral flexibility, emotion regulation and value updating. Nat Neurosci 16:1140–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuss DT, Levine B, Alexander MP, Hong J, Palumbo C, Hamer L, Murphy KJ, Izukawa D (2000) Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 38:388–402

    Article  CAS  PubMed  Google Scholar 

  • Wallis JD, Anderson KC, Miller EK (2001) Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–956

    Article  CAS  PubMed  Google Scholar 

  • Walton ME, Behrens TE, Buckley MJ, Rudebeck PH, Rushworth MF (2010) Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron 65:927–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White IM, Wise SP (1999) Rule-dependent neuronal activity in the prefrontal cortex. Exp Brain Res 126:315–335

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Japan KK

About this chapter

Cite this chapter

Tanaka, K., Buckley, M.J., Mansouri, F.A. (2017). Functional Division Among Prefrontal Cortical Areas in an Analog of Wisconsin Card Sorting Test. In: Watanabe, M. (eds) The Prefrontal Cortex as an Executive, Emotional, and Social Brain. Springer, Tokyo. https://doi.org/10.1007/978-4-431-56508-6_2

Download citation

Publish with us

Policies and ethics

Navigation