The Immunopathology of Behçet’s Disease

  • Chapter
  • First Online:
Behçet's Disease
  • 1208 Accesses

Abstract

Aberrant immune functions including but not restricted to skewed T cell responses and intrinsic activation of B lymphocytes contributed to the development of Behçet’s disease (BD). Recently, we found that Th17 cells, a new helper T (Th) cell subset which produces IL17 family cytokines, increased in patients with BD. Precise analyses disclosed that Th1/Th17 cells which harbor both phenotypes of IFNgamma-producing cells and that of IL17-producing cells simultaneously increased significantly in patients with BD.

We found that macrophages/monocytes regulated Th cell differentiation through a heat-shock protein (HSP) in both systemic immune system and local inflammatory lesions in patients with BD. Here, we summarize current findings on Th cell differentiation, antigen-presenting cell (APC) activation, and their contribution to the pathogenesis of BD, especially in view of IL12/IL23 family cytokine production and pattern recognition receptor (PRR) function of macrophages/monocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sakane T, Takeno M, Suzuki N, Inaba G. Behçet’s disease. N Engl J Med. 1999;341:1284–91.

    CAS  PubMed  Google Scholar 

  2. Melikoglu M, Uysal S, Krueger JG, et al. Characterization of the divergent wound-healing responses occurring in the pathergy reaction and normal healthy volunteers. J Immunol. 2006;177:6415–21.

    CAS  PubMed  Google Scholar 

  3. Ben Ahmed M, Houman H, Miled M, Dellagi K, Louzir H. Involvement of chemokines and Th1 cytokines in the pathogenesis of mucocutaneous lesions of Behçet’s disease. Arthritis Rheum. 2004;50:2291–5.

    CAS  PubMed  Google Scholar 

  4. Koarada S, Haruta Y, Tada Y, et al. Increased entry of CD4+ T cells into the Th1 cytokine effector pathway during T-cell division following stimulation in Behcet’s disease. Rheumatology (Oxford). 2004;43:843–51.

    CAS  Google Scholar 

  5. Houman H, Hamzaoui A, Ben Ghorbal I, Khanfir M, Feki M, Hamzaoui K. Abnormal expression of chemokine receptors in Behçet’s disease: relationship to intracellular Th1/Th2 cytokines and to clinical manifestations. J Autoimmun. 2004;23:267–73.

    CAS  PubMed  Google Scholar 

  6. Frassanito MA, Dammacco R, Cafforio P, Dammacco F. Th1 polarization of the immune response in Behçet’s disease: a putative pathogenetic role of interleukin-12. Arthritis Rheum. 1999;42:1967–74.

    CAS  PubMed  Google Scholar 

  7. Ilhan F, Demir T, Türkçüoğlu P, Turgut B, Demir N, Gödekmerdan A. Th1 polarization of the immune response in uveitis in Behçet’s disease. Can J Ophthalmol. 2008;43:105–8.

    PubMed  Google Scholar 

  8. Dalghous AM, Freysdottir J, Fortune F. Expression of cytokines, chemokines, and chemokine receptors in oral ulcers of patients with Behcet’s disease (BD) and recurrent aphthous stomatitis is Th1-associated, although Th2-association is also observed in patients with BD. Scand J Rheumatol. 2006;35:472–5.

    CAS  PubMed  Google Scholar 

  9. Nara K, Kurokawa MS, Chiba S, et al. Involvement of innate immunity in the pathogenesis of intestinal Behçet’s disease. Clin Exp Immunol. 2008;152:245–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Imamura Y, Kurokawa MS, Yoshikawa H, et al. Involvement of Th1 cells and heat shock protein 60 in the pathogenesis of intestinal Behcet’s disease. Clin Exp Immunol. 2005;139:371–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  11. Nagafuchi H, Takeno M, Yoshikawa H, et al. Excessive expression of Txk, a member of the Tec family of tyrosine kinases, contributes to excessive Th1 cytokine production by T lymphocytes in patients with Behcet’s disease. Clin Exp Immunol. 2005;139:363–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Choe JY, Chung WT, Lee SW, et al. Regional distinction for the clinical severity of Behçet’s disease in Korea: four university-based medical centers study. Clin Exp Rheumatol. 2010;28:S20–26.

    PubMed  Google Scholar 

  13. Mumcu G, Ergun T, Inanc N, et al. Oral health is impaired in Behçet’s disease and is associated with disease severity. Rheumatology (Oxford). 2004;43:1028–33.

    CAS  Google Scholar 

  14. Yokota K, Hayashi S, Araki Y, et al. Characterization of Streptococcus sanguis isolated from patients with Behçet’s disease. Microbiol Immunol. 1995;39:729–32.

    CAS  PubMed  Google Scholar 

  15. Yanagihori H, Oyama N, Nakamura K, Mizuki N, Oguma K, Kaneko F. Role of IL12B promoter polymorphism in Adamantiades-Behcet’s disease susceptibility: an involvement of Th1 immunoreactivity against Streptococcus sanguinis antigen. J Invest Dermatol. 2006;126:1534–40.

    CAS  PubMed  Google Scholar 

  16. Palmer MT, Weaver CT. Autoimmunity: increasing suspects in the CD4+ T cell lineup. Nat Immunol. 2010;11:36–40.

    CAS  PubMed  Google Scholar 

  17. Basu R, Hatton RD, Weaver CT. The Th17 family: flexibility follows function. Immunol Rev. 2013;252:89–103.

    PubMed Central  PubMed  Google Scholar 

  18. Reynolds JM, Dong C. Toll-like receptor regulation of effector T lymphocyte function. Trends Immunol. 2013;34:511–9.

    CAS  PubMed  Google Scholar 

  19. Lu L, Wang J, Zhang F, et al. Role of SMAD and non-SMAD signals in the development of Th17 and regulatory T cells. J Immunol. 2010;184:4295–306.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Bettelli E, Carrier Y, Gao W, et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature. 2006;441:235–8.

    CAS  PubMed  Google Scholar 

  21. Vignali DA, Kuchroo VK. IL12 family cytokines: immunological playmakers. Nat Immunol. 2012;13:722–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL23 is composed of IL12Rbeta1 and a novel cytokine receptor subunit, IL23R. J Immunol. 2002;168:5699–708.

    CAS  PubMed  Google Scholar 

  23. Stumhofer JS, Silver JS, Laurence A, et al. Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol. 2007;8:1363–71.

    CAS  PubMed  Google Scholar 

  24. Collison LW, Workman CJ, Kuo TT, et al. The inhibitory cytokine IL35 contributes to regulatory T-cell function. Nature. 2007;450:566–9.

    CAS  PubMed  Google Scholar 

  25. Bardel E, Larousserie F, Charlot-Rabiega P, Coulomb-L’Herminé A, Devergne O. Human CD4+ CD25+ Foxp3+ regulatory T cells do not constitutively express IL35. J Immunol. 2008;181:6898–905.

    CAS  PubMed  Google Scholar 

  26. Garbers C, Hermanns HM, Schaper F, et al. Plasticity and cross-talk of interleukin 6-type cytokines. Cytokine Growth Factor Rev. 2012;23:85–97.

    CAS  PubMed  Google Scholar 

  27. Hamzaoui K, Bouali E, Ghorbel I, Khanfir M, Houman H, Hamzaoui A. Expression of Th-17 and RORγt mRNA in Behçet’s Disease. Med Sci Monit. 2011;17:CR227–234.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Shimizu J, Takai K, Fujiwara N, et al. Excessive CD4+ T cells co-expressing interleukin-17 and interferon-γ in patients with Behçet’s disease. Clin Exp Immunol. 2012;168:68–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Geri G, Terrier B, Rosenzwajg M, et al. Critical role of IL21 in modulating TH17 and regulatory T cells in Behçet disease. J Allergy Clin Immunol. 2011;128:655–64.

    CAS  PubMed  Google Scholar 

  30. Shimizu J, Izumi T, Arimitsu N, et al. Skewed TGFβ/Smad signalling pathway in T cells in patients with Behçet’s disease. Clin Exp Rheumatol. 2012;30:S35–39.

    CAS  PubMed  Google Scholar 

  31. Muranski P, Restifo NP. Essentials of Th17 cell commitment and plasticity. Blood. 2013;121:2402–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Annunziato F, Cosmi L, Liotta F, Maggi E, Romagnani S. Defining the human T helper 17 cell phenotype. Trends Immunol. 2012;33:505–12.

    CAS  PubMed  Google Scholar 

  33. Annunziato F, Cosmi L, Santarlasci V, et al. Phenotypic and functional features of human Th17 cells. J Exp Med. 2007;204:1849–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Shimizu J, Kaneko F, Suzuki N. Skewed helper T cell responses to IL12 family cytokines produced by antigen presenting cells and the genetic background in Behcet’s disease. Genet Res Int. 2013. doi:10.1155/2013/363859.

    PubMed Central  PubMed  Google Scholar 

  35. Kim ES, Kim SW, Moon CM, et al. Interactions between IL17A, IL23R, and STAT4 polymorphisms confer susceptibility to intestinal Behcet’s disease in Korean population. Life Sci. 2012;90:740–6.

    CAS  PubMed  Google Scholar 

  36. Xavier JM, Shahram F, Davatchi F, et al. Association study of IL10 and IL23RIL12RB2 in Iranian patients with Behçet’s disease. Arthritis Rheum. 2012;64:2761–72.

    CAS  PubMed  Google Scholar 

  37. Hou S, Yang Z, Du L, et al. Identification of a susceptibility locus in STAT4 for Behçet’s disease in Han Chinese in a genome-wide association study. Arthritis Rheum. 2012;64:4104–13.

    CAS  PubMed  Google Scholar 

  38. Lee YJ, Horie Y, Wallace GR, et al. Genome-wide association study identifies GIMAP as a novel susceptibility locus for Behcet’s disease. Ann Rheum Dis. 2013;72:1510–6.

    CAS  PubMed  Google Scholar 

  39. Pekiner FN, Aytugar E, Demirel GY, Borahan MO. Interleukin-2, interleukin-6 and T regulatory cells in peripheral blood of patients with Behçet’s disease and recurrent aphthous ulcerations. J Oral Pathol Med. 2012;41:73–9.

    CAS  PubMed  Google Scholar 

  40. Sakaguchi S, Vignali DA, Rudensky AY, Niec RE, Waldmann H. The plasticity and stability of regulatory T cells. Nat Rev Immunol. 2013;13:461–7.

    CAS  PubMed  Google Scholar 

  41. Nanke Y, Kotake S, Goto M, Ujihara H, Matsubara M, Kamatani N. Decreased percentages of regulatory T cells in peripheral blood of patients with Behcet’s disease before ocular attack: a possible predictive marker of ocular attack. Mod Rheumatol. 2008;18:354–8.

    PubMed  Google Scholar 

  42. Hamzaoui K, Borhani Haghighi A, Ghorbel IB, Houman H. RORC and Foxp3 axis in cerebrospinal fluid of patients with neuro-Behçet’s disease. J Neuroimmunol. 2011;233:249–53.

    CAS  PubMed  Google Scholar 

  43. Hamzaoui K, Hamzaoui A, Houman H. CD4+CD25+ regulatory T cells in patients with Behçet’s disease. Clin Exp Rheumatol. 2006;24:S71–78.

    CAS  PubMed  Google Scholar 

  44. Ohkura N, Kitagawa Y, Sakaguchi S. Development and maintenance of regulatory T cells. Immunity. 2013;38:414–23.

    CAS  PubMed  Google Scholar 

  45. Suzuki N, Sakane T, Ueda Y, Tsunematsu T. Abnormal B cell function in patients with Behçet’s disease. Arthritis Rheum. 1986;29:212–9.

    CAS  PubMed  Google Scholar 

  46. Kaneko F, Takahashi Y, Muramatsu Y, Miura Y. Immunological studies on aphthous ulcer and erythema nodosum-like eruptions in Behçet’s disease. Br J Dermatol. 1985;113:303–12.

    CAS  PubMed  Google Scholar 

  47. Taylor PV, Chamberlain MA, Scott JS. Autoreactivity in patients with Behçet’s disease. Br J Rheumatol. 1993;32:908–10.

    PubMed  Google Scholar 

  48. Yurdakul S, Yazici H, Tuzun Y, Pazarli H, Yalcin B, Altac M, et al. The arthritis of Behçet’s disease: a prospective study. Ann Rheum Dis. 1983;42:505–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Gibson T, Laurent R, Highton J, Wilton M, Dyson M, Millis R. Synovial histopathology of Behçet’s syndrome. Ann Rheum Dis. 1981;40:376–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Ekşioglu-Demiralp E, Kibaroglu A, Direskeneli H, et al. Phenotypic characteristics of B cells in Behçet’s disease: increased activity in B cell subsets. J Rheumatol. 1999;26:826–32.

    PubMed  Google Scholar 

  51. Hamzaoui K, Kahan A, Hamza M, Ayed K. Suppressive T cell function of Epstein-Barr virus induced B cell activation in active Behçet’s disease. Clin Exp Rheumatol. 1991;9:131–5.

    CAS  PubMed  Google Scholar 

  52. Hamzaoui K, Houman H, Ben Dhifallah I, Kamoun M, Hamzaoui A. Serum BAFF levels and skin mRNA expression in patients with Behçet’s disease. Clin Exp Rheumatol. 2008;26:S64–71.

    CAS  PubMed  Google Scholar 

  53. Hamzaoui A, Chelbi H, Sassi FH, Hamzaoui K. Release of B cell-activating factor of the TNF family in bronchoalveolar lavage from Behçet’s disease with pulmonary involvement. Oxid Med Cell Longev. 2010;3:122–8.

    PubMed Central  PubMed  Google Scholar 

  54. Hirohata S, Kikuchi H. Histopathology of the ruptured pulmonary artery aneurysm in a patient with Behçet’s disease. Clin Exp Rheumatol. 2009;27:S91–95.

    CAS  PubMed  Google Scholar 

  55. Hirohata S. Histopathology of central nervous system lesions in Behçet’s disease. J Neurol Sci. 2008;267:41–7.

    CAS  PubMed  Google Scholar 

  56. Lee KH, Chung HS, Kim HS, et al. Human alpha-enolase from endothelial cells as a target antigen of anti-endothelial cell antibody in Behçet’s disease. Arthritis Rheum. 2003;48:2025–35.

    CAS  PubMed  Google Scholar 

  57. Lu Y, Ye P, Chen SL, Tan EM, Chan EK. Identification of kinectin as a novel Behçet’s disease autoantigen. Arthritis Res Ther. 2005;7:R1133–1139.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Ooka S, Nakano H, Matsuda T, et al. Proteomic surveillance of autoantigens in patients with Behcet’s disease by a proteomic approach. Microbiol Immunol. 2010;54:354–61.

    CAS  PubMed  Google Scholar 

  59. Mahesh SP, Li Z, Buggage R, et al. Alpha tropomyosin as a self-antigen in patients with Behçet’s disease. Clin Exp Immunol. 2005;140:368–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Osterloh A, Breloer M. Heat shock proteins: linking danger and pathogen recognition. Med Microbiol Immunol. 2008;197:1–8.

    CAS  PubMed  Google Scholar 

  61. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801.

    CAS  PubMed  Google Scholar 

  62. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.

    CAS  PubMed  Google Scholar 

  63. Piccinini AM, Midwood KS. DAMPening inflammation by modulating TLR signalling. Mediat Inflamm. 2010;2010:1–21. doi:10.1155/2010/672395.

    Google Scholar 

  64. Johnson J, Molle C, Aksoy E, Goldman M, Goriely S, Willems F. A conventional protein kinase C inhibitor targeting IRF-3-dependent genes differentially regulates IL12 family members. Mol Immunol. 2011;48:1484–93.

    CAS  PubMed  Google Scholar 

  65. Jackson AM, Mulcahy LA, Porte J, et al. Role of mitogen-activated protein kinase and PI3K pathways in the regulation of IL12-family cytokines in dendritic cells and the generation of T H-responses. Eur Cytokine Netw. 2010;21:319–28.

    CAS  PubMed  Google Scholar 

  66. Schuetze N, Schoeneberger S, Mueller U, Freudenberg MA, Alber G, Straubinger RK. IL12 family members: differential kinetics of their TLR4-mediated induction by Salmonella enteritidis and the impact of IL10 in bone marrow-derived macrophages. Int Immunol. 2005;17:649–59.

    CAS  PubMed  Google Scholar 

  67. Chapman NM, Bilal MY, Cruz-Orcutt N, et al. Distinct signaling pathways regulate TLR2 co-stimulatory function in human T cells. Cell Signal. 2013;25:639–50.

    CAS  PubMed  Google Scholar 

  68. Ritossa F. A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia. 1962;18:571–3.

    CAS  Google Scholar 

  69. Young JC, Agashe VR, Siegers K, Hartl FU. Pathways of chaperone-mediated protein folding in the cytosol. Nat Rev Mol Cell Biol. 2004;5:781–91.

    CAS  PubMed  Google Scholar 

  70. Dudani AK, Gupta RS. Immunological characterization of a human homolog of the 65-kilodalton mycobacterial antigen. Infect Immun. 1989;57:2786–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Chen GY, Nuñez G. Sterile inflammation: sensing and reacting to damage. Nat Rev Immunol. 2010;10:826–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Puga Yung GL, Fidler M, Albani E, et al. Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn’s disease. PLoS One. 2009;4(11):e7714. doi:10.1371/journal.pone.0007714.

    PubMed Central  PubMed  Google Scholar 

  73. Zonneveld-Huijssoon E, Albani S, Prakken BJ, van Wijk F. Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol. 2013;171:20–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Koffeman EC, Genovese M, Amox D, et al. Epitope-specific immunotherapy of rheumatoid arthritis: clinical responsiveness occurs with immune deviation and relies on the expression of a cluster of molecules associated with T cell tolerance in a double-blind, placebo-controlled, pilot phase II trial. Arthritis Rheum. 2009;60:3207–16.

    CAS  PubMed  Google Scholar 

  75. Do JE, Kwon SY, Park S, Lee ES. Effects of vitamin D on expression of Toll-like receptors of monocytes from patients with Behcet’s disease. Rheumatology (Oxford). 2008;47:840–8.

    CAS  Google Scholar 

  76. Kirino Y, Takeno M, Watanabe R, et al. Association of reduced heme oxygenase-1 with excessive Toll-like receptor 4 expression in peripheral blood mononuclear cells in Behçet’s disease. Arthritis Res Ther. 2008;10(1):R16. doi:10.1186/ar2367.

    PubMed Central  PubMed  Google Scholar 

  77. Hamzaoui K, Abid H, Berraies A, Ammar J, Hamzaoui A. NOD2 is highly expressed in Behçet disease with pulmonary manifestations. J Inflamm (Lond). 2012;9(1):3. doi:10.1186/1476-9255-9-3.

    CAS  Google Scholar 

  78. Seoudi N, Bergmeier LA, Hagi-Pavli E, Bibby D, Curtis MA, Fortune F. The role of TLR2 and 4 in Behcet’s disease pathogenesis. Innate Immun. 2013;20(4):412–22. doi:10.1177/1753425913498042.

    PubMed  Google Scholar 

  79. Durrani O, Banahan K, Sheedy FJ, et al. TIRAP Ser180Leu polymorphism is associated with Behcet’s disease. Rheumatology (Oxford). 2011;50:1760–5.

    CAS  Google Scholar 

  80. Yavuz S, Elbir Y, Tulunay A, Eksioglu-Demiralp E, Direskeneli H. Differential expression of toll-like receptor 6 on granulocytes and monocytes implicates the role of microorganisms in Behcet’s disease etiopathogenesis. Rheumatol Int. 2008;28:401–6.

    CAS  PubMed  Google Scholar 

  81. Ergun T, Ince U, Ekşioğlu-Demiralp E, et al. HSP 60 expression in mucocutaneous lesions of Behçet’s disease. J Am Acad Dermatol. 2001;45:904–9.

    CAS  PubMed  Google Scholar 

  82. Deniz E, Guc U, Buyukbabani N, Gul A. HSP 60 expression in recurrent oral ulcerations of Behçet’s disease. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;110:196–200.

    PubMed  Google Scholar 

  83. Bramanti TE, Dekker NP, Lozada-Nur F, Sauk JJ, Regezi JA. Heat shock (stress) proteins and gamma delta T lymphocytes in oral lichen planus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995;80:698–704.

    CAS  PubMed  Google Scholar 

  84. Pervin K, Childerstone A, Shinnick T, et al. T cell epitope expression of mycobacterial and homologous human 65-kilodalton heat shock protein peptides in short term cell lines from patients with Behçet’s disease. J Immunol. 1993;151:2273–82.

    CAS  PubMed  Google Scholar 

  85. Kaneko S, Suzuki N, Yamashita N, et al. Characterization of T cells specific for an epitope of human 60-kD heat shock protein (hsp) in patients with Behcet’s disease (BD) in Japan. Clin Exp Immunol. 1997;108:204–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Shimizu J, Izumi T, Suzuki N. Aberrant Activation of Heat Shock Protein 60/65 Reactive T Cells in Patients with Behcet’s Disease. Autoimmun Dis. 2012;1(1):105205. doi:10.1155/2012/105205.

    Google Scholar 

  87. Kirino Y, Zhou Q, Ishigatsubo Y, et al. Targeted resequencing implicates the familial Mediterranean fever gene MEFV and the toll-like receptor 4 gene TLR4 in Behçet disease. Proc Natl Acad Sci U S A. 2013;110:8134–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Kirino Y, Bertsias G, Ishigatsubo Y, et al. Genome-wide association analysis identifies new susceptibility loci for Behçet’s disease and epistasis between HLA-B*51 and ERAP1. Nat Genet. 2010;45:202–7.

    Google Scholar 

  89. Altincicek B, Moll J, Campos N, et al. Cutting edge: human gamma delta T cells are activated by intermediates of the 2-C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. J Immunol. 2001;166:3655–8.

    CAS  PubMed  Google Scholar 

  90. Groh V, Steinle A, Bauer S, Spies T. Recognition of stress-induced MHC molecules by intestinal epithelial gammadelta T cells. Science. 1998;279:1737–40.

    CAS  PubMed  Google Scholar 

  91. Martin B, Hirota K, Cua DJ, Stockinger B, Veldhoen M. Interleukin-17-producing gammadelta T cells selectively expand in response to pathogen products and environmental signals. Immunity. 2009;31:321–30.

    CAS  PubMed  Google Scholar 

  92. Hamzaoui K, Hamzaoui A, Hentati F, et al. Phenotype and functional profile of T cells expressing gamma delta receptor from patients with active Behçet’s disease. J Rheumatol. 1994;21:2301–6.

    CAS  PubMed  Google Scholar 

  93. Hasan A, Fortune F, Wilson A, et al. Role of gamma delta T cells in pathogenesis and diagnosis of Behcet’s disease. Lancet. 1996;347:789–94.

    CAS  PubMed  Google Scholar 

  94. Yamashita N, Kaneoka H, Kaneko S, et al. Role of gammadelta T lymphocytes in the development of Behçet’s disease. Clin Exp Immunol. 1997;107:241–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Mochizuki M, Suzuki N, Takeno M, et al. Fine antigen specificity of human gamma delta T cell lines (V gamma 9+) established by repetitive stimulation with a serotype (KTH-1) of a gram-positive bacterium, Streptococcus sanguis. Eur J Immunol. 1994;24:1536–43.

    CAS  PubMed  Google Scholar 

  96. Schwarz H, Posselt G, Wurm P, Ulbing M, Duschl A, Horejs-Hoeck J. TLR8 and NOD signaling synergistically induce the production of IL1β and IL23 in monocyte-derived DCs and enhance the expression of the feedback inhibitor SOCS2. Immunobiology. 2013;218:533–42.

    CAS  PubMed  Google Scholar 

  97. Vieira SM, Cunha TM, França RF, et al. Joint NOD2/RIPK2 signaling regulates IL17 axis and contributes to the development of experimental arthritis. J Immunol. 2012;188:5116–22.

    CAS  PubMed  Google Scholar 

  98. Türe-Özdemir F, Tulunay A, Elbasi MO, et al. Proinflammatory cytokine and caspase-1 responses to pattern recognition receptor activation of neutrophils and dendritic cells in Behcet’s disease. Rheumatology (Oxford). 2013;52:800–5.

    Google Scholar 

  99. Woo MY, Cho O, Lee MJ, Kim K, Lee ES, Park S. Differential effects of colchicine in blood mononuclear cells of patients with Behçet disease in relation to colchicine responsiveness. Br J Dermatol. 2012;167:914–21.

    CAS  PubMed  Google Scholar 

  100. Düzgün N, Ayaşlioğlu E, Tutkak H, Aydintuğ OT. Cytokine inhibitors: soluble tumor necrosis factor receptor 1 and interleukin-1 receptor antagonist in Behçet’s disease. Rheumatol Int. 2005;25:1–5.

    PubMed  Google Scholar 

  101. Yosipovitch G, Shohat B, Bshara J, Wysenbeek A, Weinberger A. Elevated serum interleukin 1 receptors and interleukin 1B in patients with Behçet’s disease: correlations with disease activity and severity. Isr J Med Sci. 1995;31:345–8.

    CAS  PubMed  Google Scholar 

  102. Gül A, Tugal-Tutkun I, Dinarello CA, et al. Interleukin-1β-regulating antibody XOMA 052 (gevokizumab) in the treatment of acute exacerbations of resistant uveitis of Behcet’s disease: an open-label pilot study. Ann Rheum Dis. 2012;71:563–6.

    PubMed  Google Scholar 

  103. Ugurlu S, Ucar D, Seyahi E, Hatemi G, Yurdakul S. Canakinumab in a patient with juvenile Behcet’s syndrome with refractory eye disease. Ann Rheum Dis. 2012;71:1589–91.

    PubMed  Google Scholar 

  104. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science. 2012;336:1268–73.

    CAS  PubMed  Google Scholar 

  105. Andoh A, Imaeda H, Aomatsu T, et al. Comparison of the fecal microbiota profiles between ulcerative colitis and Crohn’s disease using terminal restriction fragment length polymorphism analysis. J Gastroenterol. 2011;46:479–86.

    PubMed  Google Scholar 

  106. Ringel-Kulka T, Cheng J, Ringel Y, et al. Intestinal microbiota in healthy U.S. young children and adults – a high throughput microarray analysis. PLoS One. 2013;8(5):e64315. doi:10.1371/journal.pone.0064315.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Frank DN, St Amand AL, Feldman RA, Boedeker EC, Harpaz N, Pace NR. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A. 2007;104:13780–5.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

Our works were supported in part by grants from Behçet’s Disease Research Committee, Research on Specific Disease of the Health Science Research Grants from the Ministry of Health, Labor and Welfare, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noboru Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Suzuki, N., Shimizu, J. (2015). The Immunopathology of Behçet’s Disease. In: Ishigatsubo, Y. (eds) Behçet's Disease. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54487-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-54487-6_2

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-54486-9

  • Online ISBN: 978-4-431-54487-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation