Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly

  • Conference paper
  • First Online:
Lie Theory and Its Applications in Physics

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 36))

Abstract

Configuration (x-)space renormalization of Euclidean Feynman amplitudes in a massless quantum field theory is reduced to the study of local extensions of associate homogeneous distributions. Primitively divergent graphs are renormalized, in particular, by subtracting the residue of an analytically regularized expression. Examples are given of computing residues that involve zeta values. The renormalized Green functions are again associate homogeneous distributions of the same degree that transform under indecomposable representations of the dilation group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Whereas x-space renormalization was straightened out in all generality [5, 33, 34, 51, 58], it took some more time to settle the p-space problem [45, 46, 63, 64], resulting in what is now termed the BPHZ theory.

  2. 2.

    In view of recent interest in 3D CFT [28, 47] we explicitly include here odd D.

  3. 3.

    A notion of residue of a Feynman graph has been introduced in the momentum space approach in terms of the graph polynomial [3, 4]. It would be interesting to establish the precise relationship between that notion and ours. The notion of Poincaré residue considered in [12], on the other hand, works in a straightforward manner for simple poles in x-space, a rather unnatural restriction for ultraviolet divergences.

  4. 4.

    A similar decomposition in an overall scale and angle variables is derived and used very recently in momentum space in [9].

  5. 5.

    The fact that the maximum function R, which replaces \(\rho _{\Sigma }(\textbf{x})\) of Theorem 2.2, does not depend smoothly on the coordinates, requires, in general, a special treatment of the lower dimensional manifolds of discontinuities of its derivatives. (See Example 4.1 below.)

  6. 6.

    Usually, in perturbation theory one is dealing with Lie algebra cohomology. Group cohomology has occurred in various contexts in the early 1980s [20, 21, 52, 59].

  7. 7.

    Representations of this type have been considered back in the 1970’s [23] within a study of a spontaneous breaking of dilation symmetry.

  8. 8.

    We thank Detlev Buchholz for stressing this point to us.

References

  1. Bergbauer, C.: Notes on Feynman integrals and renormalization. ar**v: 1005.3960 [hep-th]

    Google Scholar 

  2. Bergbauer, C., Brunetti, R., Kreimer, D.: Renormalization and resolution of singularities. ar**v:0908.0633v2 [hep-th]

    Google Scholar 

  3. Bloch, S., Esnault, H., Kreimer, D.: On motives and graph polynomials. Comm. Math. Phys. 267, 181–225 (2006). math/0510011

    Google Scholar 

  4. Bloch, S., Kreimer, D.: Mixed Hodge structures and renormalization in physics. Comm. Number Theor. Phys. 2, 637–718 (2008). ar**v:0804.4399 [hep-th]; Feynman amplitudes and Landau singularities for 1-loop graphs. ar**v:1007.0338 [hep-th]

    Google Scholar 

  5. Bogoliubov, N.N., Parasiuk, O.S.: Über die Multiplikation der Kausalfunktionen in der Quantentheorie der Felder. Acta Math. 97, 227–266 (1957)

    Article  MathSciNet  Google Scholar 

  6. Bogoliubov, N.N., Shirkov, D.V.: Introduction to the Theory of Quantized Fields, 3rd edn. Wiley, New York (1980)

    Google Scholar 

  7. Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B393, 403–412 (1997). hep-th/9609128

    Google Scholar 

  8. Bros, J., Epstein, H., Glaser, V., Stora, R.: Quelques aspects globaux des problèmes d’Edge-of-the-Wedge, Nice, 1973. In: Hyperfunctions and Theoretical Physics. Lecture Notes in Mathematics, vol. 449, pp. 185–218. Berlin (1975)

    Google Scholar 

  9. Brown, F., Kreimer, D.: Angles, scales and parametric renormalization. ar**v:1112.1180 [hep-th]

    Google Scholar 

  10. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: Renormalization on physical backgrounds. Comm. Math. Phys. 208, 623–661 (2000). math-ph/990328

    Google Scholar 

  11. Brunetti, R., Fredenhagen, K., Verch, R.: The generally covariant locality principle: A new paradigm for local quantum physics. Comm. Math. Phys. 237, 31–68 (2003). math-ph/0112041

    Google Scholar 

  12. Ceyhan, O., Marcolli, M.: Feynman integrals and motives of configuration space. ar**v:1012.5485 [math-ph]

    Google Scholar 

  13. Chetyrkin, K.G., Kataev, A.L., Tkachov, F.V.: New approach to evaluation of multiloop Feynman integarls: The Gegenbauer polynomial x-space technique. Nucl. Phys. B174, 345–377 (1980)

    Article  MathSciNet  Google Scholar 

  14. Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem I: The Hopf algebra structure of graphs and the main theorem, II: the β-function diffeomorphism and the renormalization group. Comm. Math. Phys. 210, 249–273 (2000), 216, 215–241 (2001). hep-th/9912092, hep-th/0003188; Insertion and elimination: The doubly infinite algebra of Feynman graphs. Ann. Inst. Henri Poincaré 3, 411–433 (2002). hep-th/0201157

    Google Scholar 

  15. De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Selecta Math. 1(3) 459–494 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dütsch, M., Fredenhagen, K.: Causal perturbation theory in terms of retarded products, and a proof of the action Ward identity. Rev. Math. Phys. 16(10) 1291–1348 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ebrahimi-Fard, K., Gracia-Bondia, J.M., Patras, F.: A Lie algebra approach to renormalization. Comm. Math. Phys. 276, 519549 (2007). hep-th/0609035

    Google Scholar 

  18. Epstein, H., Glaser, V.: The role of locality in perturbation theory. Ann. Inst. H. Poincaré A19(3), 211–295 (1973)

    MathSciNet  Google Scholar 

  19. Epstein, H., Glaser, V., Stora, R.: General properties of the n-point functions in local quantum field theory. In: Balian, R., Iagolnitzer, D. (eds.) Structural Analysis of Collision Amplitudes, Les Houches, 1975. North-Holland, Amsterdam

    Google Scholar 

  20. Faddeev, L.D.: Operator anomaly for the Gauss law. Phys. Lett. B145, 81–84 (1984)

    MathSciNet  Google Scholar 

  21. Faddeev, L.D., Shatashvili, S.L.: Algebraic and Hamiltonian methods in the theory of nonabelian anomalies. Teoret. Mat. Fiz. 60(2) 206–217 (1984) [English translation: Theoret. Math. Phys. 60(2) (1984) 770–778]

    Google Scholar 

  22. Falk, S., Häußling, R., Scheck, F.: Renormalization in quantum field theory: an improved rigorous method. J. Phys. A: Math. Theor. 43, 035401 (15p) (2010). ar**v:0901.2252 [hep-th]

    Google Scholar 

  23. Ferrara, S., Gatto, R., Grillo, A.F.: Logarithmic scaling and spontaneous breaking. Phys. Lett. 42B 264–266 (1972)

    Google Scholar 

  24. Figeroa, H., Gracia-Bondia, J.M.: Combinatorial Hopf algebras in quantum field theory. Rev. Math. Phys. 17 881 (2005). hep-th/0408145

    Google Scholar 

  25. Freedman, D.Z., Johnson, K., Latorre, J.I.: Differential regularization and renormalization: A new method of calculation in quantum field theory. Nucl. Phys. B371 353–314 (1992)

    Article  MathSciNet  Google Scholar 

  26. Fulton, W., MacPherson, R.: A compactification of configuration space. Ann. Math. 139, 183–225 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gelfand, I.M., Shilov, G.E.: Generalized Functions I. Academic, New York (1968) (original Russian edition: Moscow, 1958)

    Google Scholar 

  28. Giombi, S., Prakash, S., Yin, X.: A note on CFT correlators in three dimensions. ar**v:1104.4317v3 [hep-th]

    Google Scholar 

  29. Gracia-Bondia, J.M.: Improved Epstein-Glaser renormalization in coordinate space I. Euclidean framework. Math. Phys. Anal. Geom. 6 55–88 (2003). hep-th/0202023

    Google Scholar 

  30. Gracia-Bondia, J.M., Lazzarini, S.: Improved Epstein-Glaser renormalization in coordinate space II. Lorentz invariant framework. J. Math. Phys. 44 3863–3875 (2003). hep-th/0212156

    Google Scholar 

  31. Gracia Bondía, J.M., Várilly, J.C., Figueroa, H.: Elements of Noncommutative Geometry. Birkhäuser, Basel (2000)

    Google Scholar 

  32. Haagensen, P.E., Latorre, J.I.: Differential renormalization of massive quantum field theoris. Phys. Lett. B283 293–297 (1992). hep-ph/9203207; A comprehensive coordinate space renormalization of quantum electrodynamics. Ann. Phys. 221, 77–105 (1993). hep-ph/9206252

    Google Scholar 

  33. Hepp, K.: Proof of the Bogoliubov-Parasiuk theorem on renormalization. Comm. Math. Phys. 2(4) 301–326 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hepp, K.: La Théorie de la Renormalisation. Lecture Notes in Physics, vol. 2. Springer, Berlin (1969)

    Google Scholar 

  35. Hollands, S.: The operator product expansion for perturbative quantum field theory in curved spacetime. Comm. Math. Phys. 273 1–36 (2007). gr-qc/0605072

    Google Scholar 

  36. Hollands, S.: Renormalized quantum Yang-Mills fields in curved spacetime. Rev. Math. Phys. 20 1033–1172 (2008). ar**v:0705.3340 [gr-qc]

    Google Scholar 

  37. Hollands, S., Wald, R.M.: Existence of local covariant time ordered products of quantum fields in curved spacetime. Comm. Math. Phys. 231 309–345 (2002). gr-qc/0111108

    Google Scholar 

  38. Hollands, S., Wald, R.M.: Quantum field theory in curved spacetime the operator product expansion and dark energy. Gen. Rel. Grav. 40 2051–2059 (2008). ar**v:0805.3419 [gr-qc]

    Google Scholar 

  39. Hörmander, L.: The Analysis of Linear Partial Differential Operators, I. Distribution Theory and Fourier Analysis, 2nd edn. Springer, Berlin (1990) (see, in particular, Sect. 3.2 and Chap. VIII)

    Google Scholar 

  40. Keller, K.J.: Euclidean Epstein-Glaser renormalization. J. Math. Phys. 50 103503 (2009). ar**v:0902.4789 [math-ph]

    Google Scholar 

  41. Keller, K.J.: Dimensional regularization in position space and a forest formula for regularized Epstein-Glaser renormalization. ar**v:1006.2148 [math-ph]

    Google Scholar 

  42. Kreimer, D.: Knots and Feynman Diagrams. Cambridge Lecture Notes in Physics, vol. 13. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  43. Kuznetsov, A.N., Tkachov, F.V., Vlasov, V.V.: Techniques of distributions in perturbative quantum field theory I. hep-th/9612037

    Google Scholar 

  44. Lacki, J., Wanders, G., Ruegg, H. (eds.): Stueckelberg, an Unconventional Figure in Twentieth Century Physics. Birkhäuser Verlag AG (2009)

    Google Scholar 

  45. [10] Lam, Y.M.: Equivalence theorem on Bogolyubov-Parasiuk-Hepp-Zimmermann renormalized Lagrangian field theories. Phys. Rev. D7, 2943 (1973)

    Google Scholar 

  46. Lowenstein, J.H., Zimmermann, W.: On the formulation of theories with zero-mass propagators. Nuclear Phys. B86, 77–103 (1975)

    Google Scholar 

  47. Maldacena, J., Zhiboedov, A.: Constraining conformal field theories with higher spin symmetry. ar**v:1112.1016 [hep-th]

    Google Scholar 

  48. Nikolov, N.M.: Anomalies in quantum field theory and cohomologies in configuration spaces. ar**v:0903.0187 [math-ph]; Talk on anomaly in quantum field theory and cohomologies of configuration spaces. ar**v:0907.3735 [hep-th]

    Google Scholar 

  49. Nikolov, N.M.: Renormalization theory of Feynman amplitudes on configuration space. ar**v:0907.3734 [hep-th]

    Google Scholar 

  50. Nikolov, N.M., Stora, R., Todorov, I.: Configuration space renormalization of massless QFT as an extension problem for associate homogeneous distributions, Bures-sur-Yvette preprint IHES/P/11/07 and work in progress

    Google Scholar 

  51. Parasiuk, O.S.: On the theory of Bogoliubov’s R-operation (Russian). Ukr. Math. Zh. 12, 287–307 (1960)

    Article  Google Scholar 

  52. Popineau, G., Stora, R.: A Pedagogical Remark on the Main Theorem of Perturbative Renormalization Theory, unpublished preprint (1982)

    Google Scholar 

  53. Prange, D.: Causal perturbation theory and differential renormalization. J. Phys. A32, 2225–2238 (1999). hep-th/9710225

    Google Scholar 

  54. Rosner, J.: Sixth order contribution to Z 3 in finite quantum electrodynamics. Phys. Rev. Lett. 17(23) 1190–1192 (1966); Higher order contributions to the divergent part of Z 3 in a model quantum electrodynamics. Ann. Phys. 44 11–34 (1967)

    Google Scholar 

  55. Schwartz, L.: Théorie des distributions I, II. Hermann, Paris (1950–1951)

    Google Scholar 

  56. Speer, E.R.: On the structure of anlytic renormalization. Comm. Math. Phys. 23, 23–36 (1971); Comm. Math. Phys. 25, 336 (1972)

    Google Scholar 

  57. Steinmann, O.: Perturbative Expansion in Axiomatic Field Theory. Lecture Notes in Physics. Springer, Berlin (1971)

    Google Scholar 

  58. Stepanov, B.M.: Abstraktnaia teoriia R-operatsii. Izv. AN SSSR, ser. mat. 27, 819 (1963); On the construction of S-matrix in accordance with perturbation theory. Izv. AN SSSR, ser. mat. 29 1037–1054 (1965) (transl. Amer. Math. Soc. (2) 91 (1969))

    Google Scholar 

  59. Stora, R.: Differential Algebras in Lagrangean Field Theory. ETHZ Zürich Lectures, January–February 1993

    Google Scholar 

  60. Stora, R.: Causalité et groupes de renormalisation perturbatifs. In: Boudjedaa, T., Makhlouf, A. (eds.) Théorie Quantique des Champs Méthode et Applications, Ecole de Physique Théorique de Jijel, Algérie, 2006. Collection Travaux en cours, vol. 68. Editions Hermann (2007/2008)

    Google Scholar 

  61. Stueckelberg, E.C.G., Petermann, A.: La normalization des constantes dans la théorie des quanta. Helv. Phys. Acta 26, 499–520 (1953)

    MathSciNet  MATH  Google Scholar 

  62. Usyukina, N.I.: Algorithm for calculating massless Feynman diagrams. Theor. Math. Phys. 79, 385–391 (1989) (transl from Teor. Mat. Fiz. 79, 63–71 (1989))

    Google Scholar 

  63. Zavyalov, O.I.: Renormalized Quantum Field Theory. Kluwer, Dordrecht (1990) (Russian original: Nauka, Moscow, 1979)

    Google Scholar 

  64. Zimmermann, W.: Convergence of Bogoliubov’s method of renormalization in momentum space. Comm. Math. Phys. 15, 208–234 (1969); Local operator products and renormalization in quantum field theory. In: Deser, S., et al. (eds.) Lectures on Elementary Particles and Quantum Field Theory. Proceedings of the 1970 Brandeis Summer Institute in Theoretical Physics, pp. 399–589. MIT, Cambridge

    Google Scholar 

Download references

Acknowledgements

The authors thank Detlev Buchholz, Maxim Kontsevich and Dirk Kreimer for discussions. N.N. acknowledges partial support by the French-Bulgarian Project Rila under the contract Egide-Rila N112. N.N. and I.T. acknowledge partial support by grant DO 02-257 of the Bulgarian National Science Foundation. N.N. and I.T. thank the organizers of the International Workshops LT-9 and SQS’2011 for the invitation and the IHÉS and the Theory Division of CERN for hospitality during the course of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Todorov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Japan

About this paper

Cite this paper

Nikolov, N.M., Stora, R., Todorov, I. (2013). Euclidean Configuration Space Renormalization, Residues and Dilation Anomaly. In: Dobrev, V. (eds) Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics & Statistics, vol 36. Springer, Tokyo. https://doi.org/10.1007/978-4-431-54270-4_9

Download citation

Publish with us

Policies and ethics

Navigation