Part of the book series: ATZ/MTZ-Fachbuch ((ATZMTZ))

Zusammenfassung

Bei der vollständigen Verbrennung eines nur aus C- und H-Atomen bestehenden, so genannten CxHy -Brennstoffes enthält das Abgas die Komponenten Sauerstoff (O2), Stickstoff ( N2 ), Kohlendioxid (CO2 ) und Wasserdampf ( H2O ).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Literatur

  • Amnéus, P., Mauß, F., Kraft, M., Vressner, A., Johansson, B. (2005): NOx and N2O formation in HCCI engines, SAE paper 2005-01-0126

    Google Scholar 

  • Appel, J., Bockhorn, H., Wulkow, M. (2001): A detailed numerical study of the evolution of soot particle size distributions in laminar premixed flames, Chemosphere, Vol. 42, 635–645

    Article  Google Scholar 

  • Basshuysen, R. van (Hrsg.) (2008): Ottomotor mit Direkteinspritzung: Verfahren, Systeme, Entwicklung, Potenzial, Vieweg+Teubner, 2. Aufl.

    Google Scholar 

  • Baulch, D. L., Cobos, C. J., Cox, A. M., Frank, P., Haymann, G., Just, T., Kerr, J. A., Murrels, T., Pilling, M. J., Twe, J., Walker, R. W., Warnatz, J. (1994): Evaluated Kinetic Data for Combustion Modeling: Supplement I. J. Phys. Chem. Ref. Data 22, 847

    Article  Google Scholar 

  • Belardini, P., Bertori, C., Cameretti, M. C., Del Giacomo, N. (1994): A Coupled Diesel Combustion and Sod Formation Model for KIVA II Code: Characteristics and Experimental Validation, Int. Symp. COMOD, A 94, 315–323

    Google Scholar 

  • Besio, G., Nobile, M. (2001): A Challenging Fuel for Diesel Engines: Orimulsion, From the Concept to the Application, CIMAC Congress, Hamburg

    Google Scholar 

  • Bockhorn, H. (1994): A Short Introduction to the Problem – Structure of the Following Parts, In: Bockhorn, H. (Ed.), Soot Formation in Combustion, Springer Verlag

    Google Scholar 

  • Borrmeister, J., Hübner, W. (1997): Einfluss der Brennraumform auf die HC-Emissionen und den Verbrennungsablauf, Motortechnische Zeitschrift MTZ, Vol. 58, 408–414

    Google Scholar 

  • Bühler, U. (1995): Prüfstandsuntersuchungen zur Dioxin-Emission von Verbrennungsmotoren, Dissertation, Universität Stuttgart

    Google Scholar 

  • Bühler, U., Essers, U., Greiner, R. (1997): Dioxin-Emission des Straßenverkehrs, MTZ, Vol. 58, 422–425

    Google Scholar 

  • Cheng, W. K., Hamrin, D., Heywood, J. B., Hochgreb, S., Min, K., Norris, M. (1993): An Overview of Hydrocarbon Emissions Mechanisms in Spark-Ignition Engines, SAE paper 932708

    Google Scholar 

  • Cui, Q., Morokuma, K., Bowman, J. M., Klippenstein, S. J. (1999): The spin-forbidden reaction CH(2P)+N2®HCN+N(4S) revisited. II. Nonadiabatic transition state theory and application, J. Chem. Phys., Vol. 110, n.19

    Google Scholar 

  • EN ISO 8178-01 (1996): Hubkolben Verbrennungsmotoren, Abgasmessungen, Teil 1: Messung der gasförmigen Emissionen und der Partikelemissionen auf dem Prüfstand, EN-ISO 8178–01

    Google Scholar 

  • Eng, J. A. (2005): The Effect of Spark Retard on Engine-out Hydrocarbon Emissions, SAE paper 2005-01-3867

    Google Scholar 

  • Fenimore, C. P. (1971): Formation of Nitric Oxide in Premixed Hydrocarbon Flames. 13th Int. Symp. Combustion, pp. 373–380, The Combustion Institute, Pittsburgh, PA

    Google Scholar 

  • Frenklach, M. (2002): Method of moments with interpolative closure, Chem. Eng. Sci., Vol. 57, 2229–2239

    Article  Google Scholar 

  • Frenklach, M., Wang, H. (1994): Detailed Mechanism and Modeling of Soot Particle Formation, In: Bockhorn, H. (Ed.), Soot Formation in Combustion, Springer Verlag

    Google Scholar 

  • Fusco, A., Knox-Kelecy, A. L., Foster, D. E. (1994): Application of a Phenomenological Soot Model to Diesel Engine Combustion, Int. Symp. COMODIA 94, 571–576

    Google Scholar 

  • Glarborg, P., Alzueta, M. U., Dam-Johansen, K., Miller, J. A. (1998): Kinetic Modeling of Hydrocarbon/Nitric Oxide Interactions in a Flow Reactor, Combust. Flame, Vol. 115, 1–27

    Article  Google Scholar 

  • GRI-MECH 3.0,(2000): www.me.berkely.edu/gri_mech

  • Heywood, J. B. (1988): Internal Combustion Engine Fundamentals. McGraw-Hill, Publ.

    Google Scholar 

  • Hill, P. G., McTaggert-Cowan, G. P. (2005): Nitrogen Oxide Production in a Diesel Engine Fueled by Natural Gas, SAE paper 2005-01-1727

    Google Scholar 

  • Kazakow, A., Foster, D. E. (1998): Modeling of Soot Formation during DI Diesel Combustion using a Multi-Step Phenomenological Soot Model, SAE paper 982463

    Google Scholar 

  • Kittelson, D. B., Engines and Nanoparticles (1998): A Review, Journal of Aerosol Science, v29, p. 575–588

    Article  Google Scholar 

  • Kweon, C.-B., Foster, D. E., Schauer, J. J., Okada, S. (2002): Detailed Chemical Composition and Particle Size Assessment of Diesel Engine Exhaust, SAE paper, 2002-01-2670

    Google Scholar 

  • Lange, J. (1996): Bestimmung der Carbonylverbindungen im Abgas von schwerölbetriebenen Dieselmotoren, Fortschritt-Berichte VDI, Reihe 15, Nr. 161, VDI Verlag, Düsseldorf

    Google Scholar 

  • Lavoie, G. A., Heywood, J. B., Keck, J. C. (1970): Experimental and Theoretical Investigation of Nitric Oxide Formation in Internal Combustion Engines, Combust. Sci. Technol., Vol. 1, 313–326

    Article  Google Scholar 

  • Liu, Y., Amr, A., Reitz, R. D. (2004): Simulation of Effects of Valve Pockets and Internal Residual Gas Distribution on HSDI Diesel Combustion and Emissions, SAE paper 2004-01-0105

    Google Scholar 

  • Mathis, U., Mohr, M., Kaegi, R., Bertola, A., Boulouchos, K. (2005): Influence of Diesel Engine Combustion Parameters on Primary Soot Particle Diameter, Environ. Sci. Technol., Vol. 39, i5, 1887–1892

    Article  Google Scholar 

  • Mauß, F. (1997): Entwicklung eines kinetischen Modells der Rußbildung mit schneller Polymerisation, Dissertation RWTH Aachen

    Google Scholar 

  • McEnally, C. S., Ciuparu, D. M., Pfefferle, L. D. (2003): Experimental study of fuel decomposition and hydrocarbon growth processes for practical fuel components: heptanes, Combust. Flame, Vol. 134, 339–359

    Article  Google Scholar 

  • McEnally, C. S., Pfefferle, L. D., Atakan, B., Kohse-Höinghaus, K. (2006): Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap, Prog. Energy and Combust. Sci., Vol. 32, 247–294

    Article  Google Scholar 

  • Miller, J. A., Bowman, C. T. (1989): Mechanism and Modeling of Nitrogen Chemistry in Combustion, Prog. Energy Combust. Sci., Vol. 15, 287–338

    Article  Google Scholar 

  • Mosbach, S., Celnik, M. S., Raj, A., Kraft, M., Zhang, H. R., Kubo, S., Kim, K.-O. (2009): Towards a detailed soot model for internal combustion engines, Combust. Flame, Artikel im Druck

    Google Scholar 

  • Moskaleva, L. V., **a, W. S., Lin, M. C. (2000): The CH+N2 reaction over the ground electronic doublet potential energy surface: a detailed transition state search, Chem. Phys. Let., Vol. 331, 269–277

    Article  Google Scholar 

  • Nagle, J., Strickland-Constable, R. F. (1962): Oxidation of Carbon between 1000–2000 °C, Proc. 5th Conf. on Carbon, Vol. 1, 154–164

    Article  Google Scholar 

  • Neoh, K. G. (1976): Soot Burnout in Flames, Ph.D. thesis, MIT

    Google Scholar 

  • Netzell, K., Lehtiniemi, H., Mauss, F. (2007): Calculating the soot particle size distribution function in turbulent diffusion flames using a sectional method, Proc. Combust. Inst., Vol. 31, 667–674

    Article  Google Scholar 

  • Nishida, K., Hiroyasu, H. (1989): Simplified Three-Dimensional Modeling of Mixture Formation and Combustion in a DI Diesel Engine, SAE Paper, 890269

    Google Scholar 

  • Pattas, K. (1973): Stickoxidbildung bei der ottomotorischen Verbrennung, MTZ 34, 397–404

    Google Scholar 

  • Pischinger, F., Schulte, H., Hansen, J. (1988): Grundlagen und Entwicklungslinien der Dieselmotorischen Brennverfahren, VDI Berichte Nr. 714, VDI Verlag

    Google Scholar 

  • Smolouchowski, M. Z. von (1917): Versuch einer mathematischen Theorie der Koagulationskinetik koloider Lösungen, Zeitschrift für Physikalisch Chemie, Heft 2, 129–268

    Google Scholar 

  • Stiesch, G. (2003): Modeling Engine Spray and Combustion Processes. Springer-Verlag, Berlin Heidelberg New York

    Book  Google Scholar 

  • Sutton, J. A., Fleming, J. W. (2008): Towards accurate kinetic modelling of prompt NO formation in hydrocarbon flames via the NCN pathway, Combust. Flame, Vol. 154, 630–636

    Article  Google Scholar 

  • Sutton, J. A., Williams, B. A., Fleming, J. W. (2008): Laser-inducedfluorescence measurements of NCN in low-pressure CH4/O2/N2 flames and its role in prompt NO formation, Combust. Flame, Vol. 153, 465–478

    Article  Google Scholar 

  • Tao, F., Liu, Y., Rempel Ewert, B. H., Foster, D. E., Reitz, R. D., Choi, D., Miles, P. C. (2005): Modeling the Effects of EGR and Injection Pressure on Soot Formation in a High-Speed Direct-Injection (HSDI) Diesel Engine Using a Multi-Step Phenomenological Soot Model, SAE paper 2005-01-0121

    Google Scholar 

  • Tao, F., Reitz, R. D., Foster, D. E., Liu, Y. (2008): Nine-step phenomenological diesel soot model validated over a wide range of engine conditions, International Journal of Thermal Sciences, Artikel im Druck

    Google Scholar 

  • Upatnieks, A., Mueller, C. J., Martin, G. C. (2005): The Influence of Charge-Gas Dilution and Temperature on DI Diesel Combustion Processes Using a Short-Ignition-Delay, Oxygenated Fuel, SAE paper 2005-01-2088

    Google Scholar 

  • Vishwanathan, G., Reitz, R. D. (2009): Modeling Soot Formation Using Reduced Polycyclic Aromatic Hydrocarbon Chemistry in n-Heptane Lifted Flames with Application to Low Temperature Combustion, J. Eng. Gas Turbines Power, Vol. 131

    Google Scholar 

  • Westbrook, C. K., Dryer, F. L. (1984): Chemical Kinetic Modeling of Hydrocarbon Combustion, Prog. Energy Combust. Sci., Vol. 10, 1–57

    Article  Google Scholar 

  • Zeldovich, Y. B. (1946): The Oxidation of Nitrogen in Cobustion and Explosions. Acta Physicochimica, USSR, Vol 21, pp.577–628

    Google Scholar 

Download references

Authors

Editor information

Günter P. Merker Christian Schwarz Rüdiger Teichmann

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Vieweg+Teubner Verlag | Springer Fachmedien Wiesbaden GmbH

About this chapter

Cite this chapter

Merker, G., Schwarz, C., Teichmann, R. (2011). Schadstoffbildung. In: Merker, G., Schwarz, C., Teichmann, R. (eds) Grundlagen Verbrennungsmotoren. ATZ/MTZ-Fachbuch. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-8348-8306-3_6

Download citation

Publish with us

Policies and ethics

Navigation