Integrating Approximate Bayesian Computation with Complex Agent-Based Models for Cancer Research

  • Conference paper
  • First Online:
Proceedings of COMPSTAT'2010

Abstract

Multi-scale agent-based models such as hybrid cellular automata and cellular Potts models are now being used to study mechanisms involved in cancer formation and progression, including cell proliferation, differentiation, migration, invasion and cell signaling. Due to their complexity, statistical inference for such models is a challenge. Here we show how approximate Bayesian computation can be exploited to provide a useful tool for inferring posterior distributions. We illustrate our approach in the context of a cellular Potts model for a human colon crypt, and show how molecular markers can be used to infer aspects of stem cell dynamics in the crypt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • ANDERSON, A. R. and QUARANTA, V. (2008): Integrative mathematical oncology. Nature Reviews Cancer 8, 227–234.

    Article  Google Scholar 

  • ANDERSON, A. R., WEAVER, A. M., CUMMINGS, P. T. and QUARANTA, V. (2006): Tumor morphology and phenotypic evolution driven by selective pressure from the microenvironment. Cell 127, 905–915.

    Article  Google Scholar 

  • BARKER, N., RIDGWAY, R. A., van ES, J. H., van de WETERING, M., BEGTHEL, H., van den BORN, M., DANENBERG, E., CLARKE, A. R., SANSOM, O. J. and CLEVERS, H. (2009): Crypt stem cells as the cells-of-origin of intestinal cancer. Nature 457, 608–611.

    Article  Google Scholar 

  • BEAUMONT, M., CORNUET, J.-M., MARIN, J.-M. and ROBERT, C. P. (2009): Adaptive approximate Bayesian computation. Biometrika 96, 983–990.

    Article  MATH  Google Scholar 

  • BEAUMONT, M. A., ZHANG, W. and BALDING, D. J. (2002): Approximate Bayesian computation in population genetics. Genetics 162, 2025–2035.

    Google Scholar 

  • BEICHL, I. and SULLIVAN, F. (2000): The Metropolis algorithm. Computing in Science and Engineering 2, 65–69.

    Article  Google Scholar 

  • BURTON, A. C. (1966): Rate of growth of solid tumours as a problem of diffusion. Growth 30, 157–176.

    Google Scholar 

  • GLAZIER, J. A. and GRANER, F. (1993): Simulation of the differential adhesion driven rearrangement of biological cells. Physical Review E 47, 2128–2154.

    Article  Google Scholar 

  • HANAHAN, D. and WEINBERG, R. A. (2000): The hallmarks of cancer. Cell 100, 57–70.

    Article  Google Scholar 

  • JIANG, Y., PJESIVAC-GRBOVIC, J., CANTRELL, C. and FREYER, J. P. (2005): A multiscale model for avascular tumor growth. Biophysics Journal 89, 3884–3894.

    Article  Google Scholar 

  • LAIRD, A. K. Dynamics of tumor growth. (1964): British Journal of Cancer 13, 490–502.

    Google Scholar 

  • MARJORAM, P. and TAVARÉ, S. (2006): Modern computational approaches for analysing molecular-genetic variation data. Nature Reviews Genetics 7, 759–770.

    Article  Google Scholar 

  • MERLO, L. M. F., PEPPER, J. W., REID, B. J. and MALEY, C. C. (2006): Cancer as an evolutionary and ecological process. Nature Reviews Cancer 6, 924–935.

    Article  Google Scholar 

  • NICOLAS, P., KIM, K. M., SHIBATA, D. and TAVARÉ, S. The stem cell population of the human colon crypt: analysis via methylation patterns. PLoS Computational Biology 3, e28.

    Google Scholar 

  • POTTEN, C. S., GANDARA, R., MAHIDA, Y. R., LOEFFLER, M. and WRIGHT, N. A. (2009): The stem cells of small intestinal crypts: where are they? Cell Proliferation 42, 731–750.

    Article  Google Scholar 

  • POTTEN, C. S. and LOEFFLER, M. (1990): Stem cells: attributes, cycles, spirals, and uncertainties. Lessons for and from the crypt. Development 110, 1001–1020.

    Google Scholar 

  • REYA, T. and CLEVERS, H. (2005): Wnt signalling in stem cells and cancer. Nature 434, 843–850.

    Article  Google Scholar 

  • SOTTORIVA, A., VERHOEFF, J. J. C., BOROVSKI, T., McWEENEY, NAUMOV, L., S. K., MEDEMA, J. P., SLOOT, P. M. A. and VERMEULEN, L. (2010a): Modeling cancer stem cell-driven tumor growth reveals invasive morphology and increased phenotypical heterogeneity. Cancer Research 70, 46–56.

    Article  Google Scholar 

  • SOTTORIVA, A., VERMEULEN, L. and TAVARÉ, S. (2010b): Modeling epigenetic mutations in hierarchically organized tumors. In preparation.

    Google Scholar 

  • YATABE, Y., TAVARÉ, S. and SHIBATA, D. (2001): Investigating stem cells in human colon by using methylation patterns. Proceedings of the National Academy of Sciences of the United States of America 98, 10839–10844.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sottoriva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sottoriva, A., Tavaré, S. (2010). Integrating Approximate Bayesian Computation with Complex Agent-Based Models for Cancer Research. In: Lechevallier, Y., Saporta, G. (eds) Proceedings of COMPSTAT'2010. Physica-Verlag HD. https://doi.org/10.1007/978-3-7908-2604-3_5

Download citation

Publish with us

Policies and ethics

Navigation