Identification and Profiling of Auxin and Auxin Metabolites

  • Chapter
  • First Online:
Auxin and Its Role in Plant Development

Abstract

During the last 10 years, the analytical techniques used in different areas of “life science” have improved tremendously. Mass spectrometry (MS) has become the most versatile and sensitive technique available for identifying and quantifying organic molecules, and liquid chromatography-mass spectrometry is the modern analytical tool of choice for analyzing samples of plant, animal and human origin. Both the sensitivity and the selectivity of the available techniques have increased immensely; modern instruments are much smaller, more user-friendly and more versatile than before, and the overall cost of the method has been greatly reduced. However, the required equipment is not available to most plant research laboratories, and most researchers in biology have limited experience with MS techniques. In this chapter, we aim to explain the advantages and limitations of these techniques, and how they can be used in plant research today. More specifically, we demonstrate how different MS techniques can be used for auxin metabolite identification, quantification and profiling. Efficient sample extraction and purification is essential for highly sensitive and selective analyses. We therefore describe selected novel approaches that have been developed to increase the sensitivity of these analyses and make them applicable at the tissue and cellular levels. We also discuss how these techniques can be combined with isotope labelling and mutant analyses to get a better understanding of the metabolic pathways involved in auxin biosynthesis and degradation. Finally, we examine the future prospects for the use of MS and other analytical techniques in auxin research as well as the potential for combining these techniques to obtain more information from single samples, and perhaps even from single cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baldi BG, Maher BR, Cohen JD (1989) Hydrolysis of indole-3-acetic acid esters exposed to mild alkaline conditions. Plant Physiol 91:9–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barkawi LS, Tam YY, Tillman JA et al (2008) A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal Biochem 372:177–188

    Article  CAS  PubMed  Google Scholar 

  • Barkawi LS, Tam YY, Tillman JA et al (2010) A high-throughput method for the quantitative analysis of auxins. Nat Protoc 5:1609–1618

    Article  CAS  PubMed  Google Scholar 

  • Chen CB, Chen YJ, Zhou J et al (2006) A 9-vinyladenine-based molecularly imprinted polymeric membrane for the efficient recognition of plant hormone 1H-indole-3-acetic acid. Anal Chim Acta 569:58–65

    Article  CAS  Google Scholar 

  • Chen ML, Huang YQ, Liu JQ et al (2011) Highly sensitive profiling assay of acidic plant hormones using a novel mass probe by capillary electrophoresis-time of flight-mass spectrometry. J Chromatogr B 879:938–944

    Article  CAS  Google Scholar 

  • Chiwocha SD, Abrams SR, Ambrose SJ et al (2003) A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35:405–417

    Article  CAS  PubMed  Google Scholar 

  • Cooney TP, Nonhebel HM (1991) Biosynthesis of indole-3-acetic acid in tomato shoots: measurement, mass spectral identification and incorporation of 2H from 2H2O into indole-3-acetic acid, D- and L-tryptophan, indole-3-pyruvate and tryptamine. Planta 184:368–376

    Article  CAS  PubMed  Google Scholar 

  • Dobrev PI, Kamínek M (2002) Fast and efficient separation of cytokinins from auxin and abscisic acid and their purification using mixed-mode solid-phase extraction. J Chromatogr A 950:21–29

    Article  PubMed  Google Scholar 

  • Dobrev PI, Havlíček L, Vágner M et al (2005) Purification and determination of plant hormones auxin and abscisic acid using solid phase extraction and two-dimensional high performance liquid chromatography. J Chromatogr A 1075:159–166

    Article  CAS  PubMed  Google Scholar 

  • Du F, Ruan G, Liang S et al (2012a) Monolithic molecularly imprinted solid-phase extraction for the selective determination of trace cytokinins in plant samples with liquid chromatography-electrospray tandem mass spectrometry. Anal Bioanal Chem 404:489–501

    Article  CAS  PubMed  Google Scholar 

  • Du F, Ruan G, Liu H (2012b) Analytical methods for tracing plant hormones. Anal Bioanal Chem 403:55–74

    Article  CAS  PubMed  Google Scholar 

  • Durgbanshi A, Arbona V, Pozo O et al (2005) Simultaneous determination of multiple phytohormones in plant extracts by liquid chromatography-electrospray tandem mass spectrometry. J Agric Food Chem 53:8437–8442

    Article  CAS  PubMed  Google Scholar 

  • Edlund A, Eklöf S, Sundberg B et al (1995) A microscale technique for gas chromatography-mass spectrometry measurements of picogram amounts of indole-3-acetic acid in plant tissues. Plant Physiol 108:1043–1047

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eklund DM, Thelander M, Landberg K et al (2010) Homologues of the Arabidopsis thaliana SHI/STY/LRP1 genes control auxin biosynthesis and affect growth and development in the moss Physcomitrella patens. Development 137:1275–1284

    Article  CAS  PubMed  Google Scholar 

  • Ernstsen A, Sandberg G, Crozier A (1986) Effects of sodium diethyldithiocarbamate, solvent, temperature and plant extracts on the stability of indoles. Physiol Plant 68:519–522

    Article  CAS  Google Scholar 

  • Farrow SC, Emery RN (2012) Concurrent profiling of indole-3-acetic acid, abscisic acid, and cytokinins and structurally related purines by high-performance-liquid-chromatography tandem electrospray mass spectrometry. Plant Methods 8:42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flores MI, Romero-González R, Frenich AG et al (2011) QuEChERS-based extraction procedure for multifamily analysis of phytohormones in vegetables by UHPLC-MS/MS. J Sep Sci 34:1517–1524

    Article  PubMed  Google Scholar 

  • Holčapek M, Jirásko R, Lísa M (2012) Recent developments in liquid chromatography-mass spectrometry and related techniques. J Chromatogr A 1259:3–15

    Article  PubMed  Google Scholar 

  • Hu Y, Li Y, Zhang Y et al (2011) Development of sample preparation method for auxin analysis in plants by vacuum microwave-assisted extraction combined with molecularly imprinted clean-up procedure. Anal Bioanal Chem 399:3367–3374

    Article  CAS  PubMed  Google Scholar 

  • Huang MT, Ho CT, Lee CY (eds) (1992) Phenolic compounds in food and their effects on health I and II. American Chemical Society, Washington, DC

    Google Scholar 

  • Izumi Y, Okazawa A, Bamba T et al (2009) Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal Chim Acta 648:215–225

    Article  CAS  PubMed  Google Scholar 

  • Jensen PJ, Bandurski RS (1995) Incorporation of deuterium into indole-3-acetic acid and tryptophan in Zea mays seedlings grown on 30 % deuterium oxide. Plant Physiol 147:697–702

    Article  Google Scholar 

  • Kai K, Horita J, Wakasa K et al (2007a) Three oxidative metabolites of indole-3-acetic acid from Arabidopsis thaliana. Phytochemistry 68:1651–1663

    Article  CAS  PubMed  Google Scholar 

  • Kai K, Wakasa K, Miyagawa H (2007b) Metabolism of indole-3-acetic acid in rice: identification and characterization of N-beta-D-glucopyranosyl indole-3-acetic acid and its conjugates. Phytochemistry 68:2512–2522

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann A (2012) The current role of high-resolution mass spectrometry in food analysis. Anal Bioanal Chem 403:1233–1249

    Article  CAS  PubMed  Google Scholar 

  • Kirwan GM, Johansson E, Kleemann R et al (2012) Building multivariate systems biology models. Anal Chem 84:7064–7071

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Sakakibara H (2012) Highly sensitive high-throughput profiling of six phytohormones using MS-probe modification and liquid chromatography-tandem mass spectrometry. Methods Mol Biol 918:151–164

    Article  CAS  PubMed  Google Scholar 

  • Kojima M, Kamada-Nobusada T, Komatsu H et al (2009) Highly sensitive and high-throughput analysis of plant hormones using MS-probe modification and liquid chromatography-tandem mass spectrometry: an application for hormone profiling in Oryza sativa. Plant Cell Physiol 50:1201–1214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kowalczyk M, Sandberg G (2001) Quantitative analysis of indole-3-acetic acid metabolites in Arabidopsis. Plant Physiol 127:1845–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kugimiya A, Takeuchi T (1999a) Application of indoleacetic acid-imprinted polymer to solid phase extraction. Anal Chim Acta 395:251–255

    Article  CAS  Google Scholar 

  • Kugimiya A, Takeuchi T (1999b) Effects of 2-hydroxyethyl methacrylate on polymer network and interaction in hydrophilic molecularly imprinted polymers. Anal Sci 15:29–33

    Article  CAS  Google Scholar 

  • Liu BF, Zhong XH, Lu YT (2002) Analysis of plant hormones in tobacco flowers by micellar electrokinetic capillary chromatography coupled with on-line large volume sample stacking. J Chromatogr A 945:257–265

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Hegeman AD, Gardner G et al (2012) Protocol: high-throughput and quantitative assays of auxin and auxin precursors from minute tissue samples. Plant Methods 8:31

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ljung K, Östin A, Lioussanne L et al (2001a) Developmental regulation of indole-3-acetic acid turnover in Scots pine seedlings. Plant Physiol 125:464–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ljung K, Bhalerao RP, Sandberg G (2001b) Sites and homeostatic control of auxin biosynthesis in Arabidopsis during vegetative growth. Plant J 28:465–474

    Article  CAS  PubMed  Google Scholar 

  • Ljung K, Hull AK, Celenza J et al (2005) Sites and regulation of auxin biosynthesis in Arabidopsis roots. Plant Cell 17:1090–1094

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu QM, Chen LH, Lu MH et al (2010) Extraction and analysis of auxins in plants using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection. J Agric Food Chem 58:2763–2770

    Article  CAS  PubMed  Google Scholar 

  • Mashiguchi K, Tanaka K, Sakai T et al (2011) The main auxin biosynthesis pathway in Arabidopsis. Proc Natl Acad Sci USA 108:18512–18517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müller M, Munné-Bosch S (2011) Rapid and sensitive hormonal profiling of complex plant samples by liquid chromatography coupled to electrospray ionization tandem mass spectrometry. Plant Methods 7:37

    Article  PubMed Central  PubMed  Google Scholar 

  • Müller A, Düchting P, Weiler EW (2002) A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216:44–56

    Article  PubMed  Google Scholar 

  • Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594

    Article  PubMed Central  PubMed  Google Scholar 

  • Novák O, Hényková E, Sairanen I et al (2012) Tissue specific profiling of the Arabidopsis thaliana auxin metabolome. Plant J 72:523–536

    Article  PubMed  Google Scholar 

  • Nováková L, Vlčková H (2009) A review of current trends and advances in modern bio-analytical methods: chromatography and sample preparation. Anal Chim Acta 656:8–35

    Article  PubMed  Google Scholar 

  • Núñez O, Gallart-Ayala H, Martins CP et al (2012) New trends in fast liquid chromatography for food and environmental analysis. J Chromatogr A 1228:298–323

    Article  PubMed  Google Scholar 

  • Oikawa A, Saito K (2012) Metabolite analyses of single cells. Plant J 70:30–38

    Article  CAS  PubMed  Google Scholar 

  • Östin A, Catalá C, Chamarro J et al (1995) Identification of glucopyranosyl-β-1,4- glucopyranosyl-β-1-N-oxindole-3-acetyl-N-aspartic acid, a new IAA catabolite, by liquid chromatography/tandem mass spectrometry. J Mass Spectrom 30:1007–1017

    Google Scholar 

  • Östin A, Kowalyczk M, Bhalerao RP et al (1998) Metabolism of indole-3-acetic acid in Arabidopsis. Plant Physiol 118:285–296

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan X, Wang W (2009) Profiling of plant hormones by mass spectrometry. J Chromatogr B 877:2806–2813

    Article  CAS  Google Scholar 

  • Pan X, Welti R, Wang X (2008) Simultaneous quantification of major phytohormones and related compounds in crude plant extracts by liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69:1773–1781

    Article  CAS  PubMed  Google Scholar 

  • Pěnčík A, Rolčík J, Novák O et al (2009) Isolation of novel indole-3-acetic acid conjugates by immunoaffinity extraction. Talanta 80:651–655

    Article  PubMed  Google Scholar 

  • Pengelly WL, Bandurski RS (1983) Analysis of indole-3-acetic acid metabolism in Zea mays using deuterium oxide as a tracer. Plant Physiol 73:445–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petersson SV, Johansson AI, Kowalczyk M et al (2009) An auxin gradient and maximum in the Arabidopsis root apex show by high-resolution cell-specific analysis of IAA distribution and synthesis. Plant Cell 21:1659–1668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Prinsen E, Van Dongen W, Esmans EL et al (1998) Micro and capillary liquid chromatography tandem mass spectrometry: a new dimension in phytohormone research. J Chromatogr A 826:25–37

    Article  CAS  Google Scholar 

  • Quittenden LJ, Davies NW, Smith JA et al (2009) Auxin biosynthesis in pea: characterization of the tryptamine pathway. Plant Physiol 151:1130–1138

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rapparini F, Tam YY, Cohen JD et al (2002) Indole-3-acetic acid metabolism in Lemna gibba undergoes dynamic changes in response to growth temperature. Plant Physiol 128:1410–1416

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reinecke DM, Bandurski RS (1983) Oxindole-3-acetic acid, an indole-3-acetic acid catabolite in Zea mays. Plant Physiol 71:211–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rittenberg D, Foster L (1940) A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem 133:727–744

    Google Scholar 

  • Sairanen I, Novák O, Pěnčík A et al (2012) Soluble carbohydrates regulate auxin biosynthesis via PIF proteins in Arabidopsis. Plant Cell 24:4907–4916

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT et al (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci USA 100:10552–10557

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi X, ** F, Huang Y et al (2012) Simultaneous determination of five plant growth regulators in fruits by modified quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction and liquid chromatography-tandem mass spectrometry. Agric Food Chem 60:60–65

    Article  CAS  Google Scholar 

  • Sugawara S, Hishiyama S, Jikumaru Y et al (2009) Biochemical analyses of indole-3-acetaldoxime-dependent auxin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 106:5430–5435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sundberg B (1990) Influence of extraction solvent (buffer, methanol, acetone) and time on the quantification of indole-3-acetic acid in plants. Physiol Plant 78:293–297

    Article  CAS  Google Scholar 

  • Sundberg B, Sandberg G, Crozier A (1986) Purification of indole-3-acetic acid in plant extracts by immunoaffinity chromatography. Phytochemistry 25:295–298

    Article  CAS  Google Scholar 

  • Svačinová J, Novák O, Plačková L et al (2012) A new approach for cytokinin isolation from Arabidopsis tissues using miniaturized purification: pipette tip solid-phase extraction. Plant Methods 8:17

    Article  PubMed Central  PubMed  Google Scholar 

  • Tam YY, Normanly J (1998) Determination of indole-3-pyruvic acid levels in Arabidopsis thaliana by gas chromatography-selected ion monitoring-mass spectrometry. J Chromatogr A 800:101–108

    Article  CAS  PubMed  Google Scholar 

  • Tam YY, Epstein E, Normanly J (2000) Characterization of auxin conjugates in Arabidopsis. Low steady-state levels of indole-3-acetyl-aspartate, indole-3-acetyl-glutamate, and indole-3-acetyl-glucose. Plant Physiol 123:589–596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor PJ (2005) Matrix effects: the Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin Biochem 38:328–334

    Article  CAS  PubMed  Google Scholar 

  • Tivendale ND, Davies NW, Molesworth PP et al (2010) Reassessing the role of N-hydroxytryptamine in auxin biosynthesis. Plant Physiol 154:1957–1965

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Meulebroek L, Vanden Bussche J, Steppe K et al (2012) Ultra-high performance liquid chromatography coupled to high resolution Orbitrap mass spectrometry for metabolomic profiling of the endogenous phytohormonal status of the tomato plant. J Chromatogr A 1260:67–80

    Article  PubMed  Google Scholar 

  • Wiklund S, Johansson E, Sjöström L et al (2008) Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS class models. Anal Chem 80:115–122

    Article  CAS  PubMed  Google Scholar 

  • Wu YL, Hu B (2009) Simultaneous determination of several phytohormones in natural coconut juice by hollow fiber-based liquid-liquid-liquid microextraction-high performance liquid chromatography. J Chromatogr A 1216:7657–7663

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Li Y, Hu Y, Li G et al (2010) Preparation of magnetic indole-3-acetic acid imprinted polymer beads with 4-vinylpyridine and β-cyclodextrin as binary monomer via microwave heating initiated polymerization and their application to trace analysis of auxins in plant tissues. J Chromatogr A 1217:7337–7344

    Article  CAS  PubMed  Google Scholar 

  • Zhao YD, Christensen SK, Fankhauser C et al (2001) A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291:306–309

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Ljung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Novák, O., Pěnčík, A., Ljung, K. (2014). Identification and Profiling of Auxin and Auxin Metabolites. In: Zažímalová, E., Petrášek, J., Benková, E. (eds) Auxin and Its Role in Plant Development. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1526-8_3

Download citation

Publish with us

Policies and ethics

Navigation