Variation in Rates of Molecular Evolution in Plants and Implications for Estimating Divergence Times

  • Chapter
  • First Online:
Plant Genome Diversity Volume 1

Abstract

For nearly as long as molecular sequence data have been available for plants, they have been used to construct phylogenetic hypotheses and date the origin and diversification of clades (e.g., Boulter et al. 1972; Ramshaw et al. 1972). These studies infer evolutionary history of plants from patterns of molecular variation, and consequently, they rely in part on assumptions about the processes that create this variation. The availability of more and more molecular data have revealed increasingly complex patterns of evolution, resulting largely from the pervasive and highly nuanced effects of selection at the molecular level. Methods of evolutionary inference now must confront this molecular complexity. In this chapter, I review some of the factors associated with molecular rate variation in plants and discuss how insights into molecular evolution both inform and confound our ability to infer divergence times from molecular data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aïnouche AK, Bayer RJ (1999) Phylogenetic relationships in Lupinus (Fabaceae: Papilionoideae) based on internal transcribed spacer sequences (ITS) of nuclear ribosomal DNA. Am J Bot 86:590–607

    PubMed  Google Scholar 

  • Álvarez I, Wendel JF (2003) Ribosomal ITS sequences and plant phylogenetic inference. Mol Phylogenet Evol 29:417–434

    PubMed  Google Scholar 

  • Andreasen K, Baldwin BG (2001) Unequal evolutionary rates between annual and perennial lineages of checker mallows (Sidalcea, Malvaceae): evidence from 18S-26S rDNA internal and external transcribed spacers. Mol Biol Evol 18:936–944

    PubMed  CAS  Google Scholar 

  • Aris-Brosou S, Yang Z (2002) Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Mol Biol Evol 20:1947–1954

    Google Scholar 

  • Barraclough TG, Harvey PH, Nee S (1996) Rate of rbcL gene sequence evolution and species diversification in flowering plants. Proc Roy Soc Lond B Bio 263:589–591

    Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2005) The age of angiosperms: a molecular timescale without a clock. Evolution 59:1245–1258

    PubMed  CAS  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97:1296–1303

    PubMed  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    PubMed  CAS  Google Scholar 

  • Boulter D, Ramshaw JAM, Thompson EW, Richardson M, Brown RH (1972) A phylogeny of higher plants based on the amino acid sequences of cytochrome c and its biological implications. Proc Roy Soc Lond B Bio 181:441–455

    Google Scholar 

  • Bousquet J, Strauss SH, Doerksen AH, Price RA (1992) Extensive variation in evolutionary rate of rbcL gene sequence among seed plants. Proc Natl Acad Sci USA 89:7844–7848

    PubMed  CAS  Google Scholar 

  • Brandl R, Mann W, Sprinzl M (1992) Estimation of the monocot-dicot age through tRNA sequences from the chloroplast. Proc Roy Soc Lond B Bio 249:13–17

    Google Scholar 

  • Britton T, Anderson CL, Jaquet D, Lundqvist S, Bremer K (2007) Estimating divergence times in large phylogenetic trees. Syst Biol 56:741–752

    PubMed  Google Scholar 

  • Brown WM, George M Jr, Wilson AC (1979) Rapid evolution of animal mitochondrial DNA. Proc Natl Acad Sci USA 76:1967–1971

    PubMed  CAS  Google Scholar 

  • Charlesworth B (1992) Evolutionary rates in partially self-fertilizing species. Am Nat 140:126–148

    PubMed  CAS  Google Scholar 

  • Charlesworth D, Wright SI (2001) Breeding systems and genome evolution. Curr Opin Genet Evol 11:685–690

    CAS  Google Scholar 

  • Cho Y, Mower JP, Qiu Y-L, Palmer JD (2004) Mitochondrial substitution rates are extraordinarily elevated and variable in a genus of flowering plants. Proc Natl Acad Sci USA 51:17741–17746

    Google Scholar 

  • Clegg MT, Gaut BS, Learn GH, Morton BR (1994) Rates and patterns of chloroplast DNA evolution. Proc Natl Acad Sci USA 91:6795–6801

    PubMed  CAS  Google Scholar 

  • Davies TJ, Savolainen V, Chase MW, Moat J, Barraclough TJ (2004) Environmental energy and evolutionary rates in flowering plants. Proc Roy Soc Lond B Bio 271:2195–2200

    Google Scholar 

  • dePamphilis CW, Young ND, Wolfe AD (1997) Evolution of plastid gene rps2 in a lineage of hemiparasitic and holoparasitic plants: many losses of photosynthesis and complex patterns of rate variation. Proc Natl Acad Sci USA 94:7367–7372

    PubMed  CAS  Google Scholar 

  • DeRose-Wilson LJ, Gaut BS (2007) Transcription-regulated mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata. BMC Evol Biol 7:66

    PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    PubMed  Google Scholar 

  • Drummond AJ, Ho SYM, Phillips MJ, Rambaut A (2006) Relaxed phylogenetics and dating with confidence. PLoS Biol 4:e88

    PubMed  Google Scholar 

  • Duff RJ, Nickrent DL (1997) Characterization of mitochondrial small subunit ribosomal RNAs from holoparasitic plants. J Mol Evol 45:631

    PubMed  CAS  Google Scholar 

  • Edwards EJ, Smith A (2010) Phylogenetic analyses reveal the shady history of C4 grasses. Proc Natl Acad Sci USA 107:2532–2537

    PubMed  CAS  Google Scholar 

  • Eyre-Walker A, Gaut BS (1997) Correlated rates of synonymous site evolution across plant genomes. Mol Biol Evol 14:455–460

    PubMed  CAS  Google Scholar 

  • Friis EM, Pederson KR, Crane PR (2006) Cretaceous angiosperm flowers: innovation and evolution in plant reproduction. Palaeogeogr Palaeocl 232:251–293

    Google Scholar 

  • Ganko EW, Meyers BC, Vision TJ (2007) Divergence in expression between duplicated genes in Arabidopsis. Mol Biol Evol 24:2298–2309

    PubMed  CAS  Google Scholar 

  • Gaut BS, Muse SV, Clark D, Clegg MT (1992) Relative rates of nucleotide substitution at the rbcL locus of monocotyledonous plants. J Mol Evol 35:292–303

    PubMed  CAS  Google Scholar 

  • Gaut BS, Muse SV, Clegg MT (1993) Relative rates of nucleotide substitution in the chloroplast genome. Mol Phylogenet Evol 2:89–96

    PubMed  CAS  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    PubMed  CAS  Google Scholar 

  • Gaut BS, Clark LG, Wendel JF, Muse SV (1997) Comparisons of the molecular evolutionary process at rbcL and ndhF in the grass family (Poaceae). Mol Biol Evol 14:769–777

    PubMed  CAS  Google Scholar 

  • Gossmann TI, Song B-H, Windsor AJ, Mitchell-Olds T, Dixon CJ, Kapralov MV, Filatov DA, Eyre-Walker A (2010) Genome wide analyses reveal little evidence for adaptive evolution in plant species. Mol Biol Evol 27:1822–1832

    PubMed  CAS  Google Scholar 

  • Graur D, Martin W (2004) Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends Genet 20:80–86

    PubMed  CAS  Google Scholar 

  • Gray RD, Atkinson QD (2003) Language-tree divergence times support the Anatolian theory of Indo-European origin. Nature 426:435–439

    PubMed  CAS  Google Scholar 

  • Guindon S (2010) Bayesian estimation of divergence times from large sequence alignments. Mol Biol Evol 27:1768–1781

    PubMed  CAS  Google Scholar 

  • Hahn MW, Conant GC, Wagner A (2004) Molecular evolution in large genetic networks: does connectivity equal constraint? J Mol Evol 58:203–211

    PubMed  CAS  Google Scholar 

  • Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133

    PubMed  CAS  Google Scholar 

  • Ho SYW (2009) An examination of phylogenetic models of substitution rate variation among lineages. Biol Lett 5:421–424

    PubMed  Google Scholar 

  • Hollister JD, Ross-Ibarra J, Gaut BS (2009) Indel-associated mutation rate varies with mating system in flowering plants. Mol Biol Evol 27:409–416

    PubMed  Google Scholar 

  • Huelsenbeck JP, Rannala B (2000) Using stratigraphic information in phylogenetics. In: Wiens JJ (ed) Phylogenetic analysis of morphological data. Smithsonian Institution Press, Washington, DC, pp 165–191

    Google Scholar 

  • Huelsenbeck JP, Larget B, Swofford D (2000) A compound poisson process for relaxing the molecular clock. Genetics 154:1879–1892

    PubMed  CAS  Google Scholar 

  • Jobson RW, Albert VA (2002) Molecular rates parallel diversification contrasts between carnivorous plant sister lineages. Cladistics 18:127–136

    Google Scholar 

  • Kay KM, Whittall JB, Hodges SA (2006) A survey of nuclear ribosomal internal transcribed spacer substitution rates across angiosperms: an approximate molecular clock with life history effects. BMC Evol Biol 6:36

    PubMed  Google Scholar 

  • Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Kishino H, Thorne JL, Bruno WJ (2001) Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol 18:352–361

    PubMed  CAS  Google Scholar 

  • Korall P, Schuettpelz E, Pryer KM (2010) Abrupt deceleration of molecular evolution linked to the origin of arborescence in ferns. Evolution 64:2786–2792

    PubMed  Google Scholar 

  • Kubatko LS, Carstens BC, Knowles LL (2009) STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics 25:971–973

    PubMed  CAS  Google Scholar 

  • Laird CD, McConaughy BL, McCarthy BJ (1969) Rate of fixation of nucleotide substitutions in evolution. Nature 224:149–154

    PubMed  CAS  Google Scholar 

  • Lancaster LT (2010) Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages. BMC Evol Biol 10:162

    PubMed  Google Scholar 

  • Laroche J, Bousquet J (1999) Evolution of mitochondrial rps3 intron in perennial and annual angiosperms and homology to nad5 intron 1. Mol Biol Evol 16:441–452

    PubMed  CAS  Google Scholar 

  • Laroche J, Li P, Bousquet J (1995) Mitochondrial DNA and the monocot-dicot divergence time. Mol Biol Evol 12:1151–1156

    CAS  Google Scholar 

  • Laroche J, Li P, Maggia L, Bousquet J (1997) Molecular evolution of angiosperm mitochondrial introns and exons. Proc Natl Acad Sci USA 94:5722–5727

    PubMed  CAS  Google Scholar 

  • Lartillot N, Poujol R (2011) A phylogenetic model for investigating correlated evolution of substitution rates and continuous phenotypic characters. Mol Biol Evol 28:729–744

    PubMed  CAS  Google Scholar 

  • Lepage T, Tupper P, Bryant D, Lawi S (2006) Continuous and tractable models of the variation of evolutionary rates. Math Biosci 199:216–233

    PubMed  Google Scholar 

  • Lewis PO (2001) A likelihood approach to estimating phylogeny from discrete morphological data. Syst Biol 50:913–925

    PubMed  CAS  Google Scholar 

  • Li WL, Rodrigo AG (2009) Covariation of branch lengths in phylogenies of functionally related genes. PLoS One 4:e8487

    PubMed  Google Scholar 

  • Liu L, Pearl DK (2007) Species trees from gene trees: reconstructing Bayesian posterior distributions of a species phylogeny using estimated gene tree distributions. Syst Biol 56:504–514

    PubMed  CAS  Google Scholar 

  • Liu L, Pearl DK, Brumfield RT, Edwards SV (2008) Estimating species trees using multiple-allele DNA sequence data. Evolution 62:2080–2091

    PubMed  Google Scholar 

  • Lu Y, Rausher MD (2003) Evolutionary rate variation in anthocyanin pathway genes. Mol Biol Evol 20:1844–1853

    PubMed  CAS  Google Scholar 

  • Maddison WP, Knowles LL (2006) Inferring phylogeny despite incomplete lineage sorting. Syst Biol 55:21–30

    PubMed  Google Scholar 

  • Magallón S (2010) Using fossils to break long branches in molecular dating: a comparison of relaxed clocks applied to the origin of angiosperms. Syst Biol 59:384–399

    PubMed  Google Scholar 

  • Magallón S, Sanderson MJ (2005) Angiosperm divergence times: the effect of genes, codon positions, and time constraints. Evolution 59:1653–1670

    PubMed  Google Scholar 

  • Martin W, Gierl A, Saedler H (1989) Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339:46–48

    CAS  Google Scholar 

  • Mayrose I, Otto SP (2011) A likelihood model for detecting trait-dependent shifts in rate of molecular evolution. Mol Biol Evol 28:759–770

    PubMed  CAS  Google Scholar 

  • Muse SV (2000) Examining rates and patterns of nucleotide substitution in plants. Plant Mol Biol 42:25–43

    PubMed  CAS  Google Scholar 

  • Muse SV, Gaut BS (1994) A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with application to the chloroplast genome. Mol Biol Evol 11:715–724

    PubMed  CAS  Google Scholar 

  • Muse SV, Gaut BS (1997) Comparing patterns of nucleotide substitution rates among chloroplast loci using the relative ratio test. Genetics 146:392–399

    Google Scholar 

  • Nichols R (2001) Gene trees and species trees are not the same. Trends Ecol Evol 16:358–364

    PubMed  Google Scholar 

  • Nickrent DL, Starr EM (1994) High rates of nucleotide substitution in nuclear small-subunit (18S) rDNA from holoparasitic flowering plants. J Mol Evol 39:62–70

    PubMed  CAS  Google Scholar 

  • Ohta T (1992) The nearly neutral theory of molecular evolution. Annu Rev Ecol Syst 23:263–286

    Google Scholar 

  • Ohta T (1993) An examination of the generation-time effect on molecular evolution. Proc Natl Acad Sci USA 90:10676–10680

    PubMed  CAS  Google Scholar 

  • Rabonsky DL (2010) Extinction rates should not be estimated from molecular phylogenies. Evolution 64:1816–1824

    Google Scholar 

  • Ramshaw JAM, Richardson DL, Meatyard BT, Brown RH, Richardson M, Thompson EW, Boulter D (1972) The time of origin of the flowering plants determined by using amino acid sequence data of cytochrome c. New Phytol 71:773–779

    CAS  Google Scholar 

  • Rannala B, Yang Z (2007) Inferring speciation times under an episodic molecular clock. Syst Biol 56:453–466

    PubMed  Google Scholar 

  • Rausher MD, Miller RE, Tiffin P (1999) Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Mol Biol Evol 16:266–274

    PubMed  CAS  Google Scholar 

  • Rausher MD, Lu Y, Meyer K (2008) Variation in constraint versus positive selection as an explanation for evolutionary rate variation among anthocyanin genes. J Mol Evol 67:137–144

    PubMed  CAS  Google Scholar 

  • Renner SS (2005) Relaxed molecular clocks for dating historical plant dispersal events. Trends Plant Sci 10:550–558

    PubMed  CAS  Google Scholar 

  • Ritland K, Clegg MT (1987) Evolutionary analysis of plant DNA sequences. Am Nat 130:S74–S100

    CAS  Google Scholar 

  • Rutschmann F (2006) Molecular dating of phylogenetic trees: a brief review of current methods that estimate divergence times. Divers Distrib 12:35–48

    Google Scholar 

  • Sanderson MJ (1997) A nonparametric approach to estimating divergence times in the absence of rate constancy. Mol Biol Evol 14:1218–1231

    CAS  Google Scholar 

  • Sanderson MJ (2002) Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol 19:101–109

    PubMed  CAS  Google Scholar 

  • Sanderson MJ (2003a) Molecular data from 27 proteins do not support a Precambrian origin of land plants. Am J Bot 90:954–956

    PubMed  CAS  Google Scholar 

  • Sanderson MJ (2003b) r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301–302

    PubMed  CAS  Google Scholar 

  • Sanderson MJ, Doyle JA (2001) Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Am J Bot 88:1499–1516

    PubMed  CAS  Google Scholar 

  • Sanderson MJ, Thorne JL, Wikström N, Bremer K (2004) Molecular evidence on plant divergence times. Am J Bot 91:1656–1665

    PubMed  CAS  Google Scholar 

  • Sarich VM, Wilson AC (1973) Generation time and genomic evolution in primates. Science 179:1144–1147

    PubMed  CAS  Google Scholar 

  • Savard L, Li P, Strauss SH, Chase MW, Michaud M, Bousquet J (1994) Chloroplast and nuclear gene sequences indicate Late Pennsylvanian time for the last common ancestor of extant seed plants. Proc Natl Acad Sci USA 91:5163–5167

    PubMed  CAS  Google Scholar 

  • Slotte T, Foxe JP, Hazzouri KM, Wright SI (2010) Genome-wide evidence for efficient positive and purifying selection in Capsella grandiflora, a plant species with a large effective population size. Mol Biol Evol 27:1813–1821

    PubMed  CAS  Google Scholar 

  • Smith SA, Donoghue MJ (2008) Rates of molecular evolution are linked to life history in flowering plants. Science 322:86–89

    PubMed  CAS  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci USA 107:5897–5902

    PubMed  CAS  Google Scholar 

  • Soria-Hernanz DF, Fiz-Palacios O, Braverman JM, Hamilton MB (2008) Reconsidering the generation time hypothesis based on nuclear ribosomal ITS sequence comparisons in annual and perennial angiosperms. BMC Evol Biol 8:344

    PubMed  Google Scholar 

  • Sun G, Ji Q, Dilcher DL, Zheng S, Nixon KC, Wang X (2002) Archaefructaceae, a new basal angiosperm family. Science 296:899–904

    PubMed  CAS  Google Scholar 

  • Svennblad B (2008) Consistent estimation of divergence times in phylogenetic trees with local molecular clocks. Syst Biol 57:947–954

    PubMed  Google Scholar 

  • Svennblad B, Britton T (2007) Improving divergence time estimation in phylogenetics: more taxa vs. longer sequences. Stat Appl Genet Mol Biol 6:35

    Google Scholar 

  • Thorne JL, Kishino H, Painter IS (1998) Estimating the rate of evolution of the rate of evolution. Mol Biol Evol 15:1647–1657

    PubMed  CAS  Google Scholar 

  • Wang H-c, Singer GAC, Hickey DA (2004) Mutational bias affects protein evolution in flowering plants. Mol Biol Evol 21:90–96

    PubMed  Google Scholar 

  • Webster AJ, Payne RJH, Pagel M (2003) Molecular phylogenies link rates of evolution and speciation. Science 301:478

    PubMed  CAS  Google Scholar 

  • Welch JJ, Bromham L (2005) Molecular dating when rates vary. Trends Ecol Evol 20:320–327

    PubMed  Google Scholar 

  • Whittle C-A (2006) The influence of environmental factors, the pollen: ovule ratio and seed bank persistence on molecular evolutionary rates in plants. J Evol Biol 19:302–308

    PubMed  Google Scholar 

  • Whittle C-A, Johnston MO (2003) Broad-scale analysis contradicts the theory that generation time affects molecular evolutionary rates in plants. J Mol Evol 56:223–233

    PubMed  CAS  Google Scholar 

  • Wikström N, Savolainen V, Chase MW (2001) Evolution of the angiosperms: calibrating the family tree. Proc Roy Soc Lond B Bio 268:2211–2220

    Google Scholar 

  • Wolfe AD, dePamphilis CW (1998) The effect of relaxed functional constraints on the photosynthetic gene rbcL in photosynthetic and nonphotosynthetic parasitic plants. Mol Biol Evol 15:1243–1258

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Li W-H, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Sharp PM, Li W-H (1989a) Rates of synonymous substitution in plant nuclear genes. J Mol Evol 29:208–211

    CAS  Google Scholar 

  • Wolfe KH, Gouy M, Yang Y-W, Sharp PM, Li W-H (1989b) Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc Natl Acad Sci USA 86:6201–6205

    PubMed  CAS  Google Scholar 

  • Wolfe KH, Morden CW, Ems SC, Palmer JD (1992) Rapid evolution of the plastid translational apparatus in a nonphotosynthetic plant: loss or accelerated sequence evolution of tRNA and ribosomal protein genes. J Mol Evol 35:304–317

    PubMed  CAS  Google Scholar 

  • Woolfit M, Bromham L (2005) Population size and molecular evolution on islands. Proc Roy Soc Lond B Bio 272:2277–2282

    CAS  Google Scholar 

  • Wright S, Keeling J, Gillman L (2006) The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proc Natl Acad Sci USA 103:7718–7722

    PubMed  CAS  Google Scholar 

  • Yang L, Gaut BS (2011) Factors that contribute to variation in evolutionary rate among Arabidopsis genes. Mol Biol Evol 28:2359–2369

    PubMed  CAS  Google Scholar 

  • Yang Y-h, Zhang F-m, Ge S (2009) Evolutionary rate patterns of the gibberellin pathway genes. BMC Evol Biol 9:206

    PubMed  Google Scholar 

  • Yoder AD, Yang ZH (2000) Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17:1081–1090

    PubMed  CAS  Google Scholar 

  • Young ND, dePamphilis CW (2005) Rate variation in parasitic plants: correlated and uncorrelated patterns among plastid genes of different function. BMC Evol Biol 5:16

    PubMed  Google Scholar 

  • Yue J-X, Li J, Wang D, Araki H, Yang S (2010) Genome-wide investigation reveals high evolutionary rates in annual model plants. BMC Plant Biol 10:242

    PubMed  Google Scholar 

  • Zhang L, Vision TJ, Gaut BS (2002) Patterns of nucleotide substitution among simultaneously duplicated gene pairs in Arabidopsis thaliana. Mol Biol Evol 19:1464–1473

    PubMed  CAS  Google Scholar 

  • Zimmer A, Lang D, Richardt S, Frank W, Reski R, Rensing SA (2007) Dating the early evolution of plants: detection and molecular clock analyses of orthologs. Mol Genet Genomics 278:393–402

    PubMed  CAS  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Academic, New York, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gordon Burleigh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Verlag Wien

About this chapter

Cite this chapter

Burleigh, J.G. (2012). Variation in Rates of Molecular Evolution in Plants and Implications for Estimating Divergence Times. In: Wendel, J., Greilhuber, J., Dolezel, J., Leitch, I. (eds) Plant Genome Diversity Volume 1. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1130-7_7

Download citation

Publish with us

Policies and ethics

Navigation