Erkennung, Identitätsdiebstahl und Tarnung

  • Chapter
  • First Online:
Die Gäste der Ameisen

Zusammenfassung

Wie jeder normale Organismus, der sich mit einem Immunsystem schützt, das zwischen Eigenem und Fremdem unterscheidet, sind Ameisen-Superorganismen mit „sozialen Immunbarrieren“ ausgestattet, die Nestgenossinnen den Zutritt ermöglichen, während sie Eindringlinge, die keine Nestgenossinnen sind, abwehren. Es ist eine der größten Herausforderungen für Myrmekophile, diese Hürden zu überwinden, um von einer Ameisengesellschaft aufgenommen zu werden. Tatsächlich ist die Erkennung eine äußerst wichtige Form der Kommunikation bei allen sozialen Insekten, einschließlich der Erkennung von fremden Arten, von Mitgliedern anderer Kolonien derselben Art, und von Nestgenossen, die verschiedenen Kasten und Entwicklungsstadien angehören.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 54.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 69.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Agrain, FA, Buffington, ML, Chaboo, CS, Chamorro, ML, Schöller, M. 2015. Leaf beetles are ant nest beetles: The curious life of the juvenile stages of case bearers (Coleoptera, Chrysomelidae, Cryptocephalinae). ZooKeys, 547: 133–164.

    Article  Google Scholar 

  • Akino, T. 2008. Chemical strategies to deal with ants: A review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecological News, 11: 173–181.

    Google Scholar 

  • Akino, T, Yamamura, K, Wakamura, S, Yamaoka, R. 2004. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Applied Entomology and Zoology, 39: 381–387.

    Article  CAS  Google Scholar 

  • Akino, T, Yamaoka, R. 1998. Chemical mimicry in the root aphid parasitoid Paralipsis eikoae Yasumatsu (Hymenoptera: Aphidiidae) of the aphid attending ant Lasius sakagamii Yamauchi & Hayashida (Hymenoptera: Formicidae). Chemoecology, 8: 153–161.

    Article  CAS  Google Scholar 

  • Akre, RD, Alpert, G, Alpert, T. 1973. Life cycle and behavior of Microdon cothurnatus in Washington (Diptera: Syrphidae). Journal of the Kansas Entomological Society, 39: 327–338.

    Google Scholar 

  • Akre, RD, Garnett, WB, Zack, RS. 1988. Biology and behavior of Microdon piperi in the Pacific Northwest (Diptera: Syrphidae). Journal of the Kansas Entomological Society, 61: 441–452.

    Google Scholar 

  • Alpert, GD. 1994. A comparative study of the symbiotic relationships between beetles of the genus Cremastocheilus (Coleoptera: Scarabaeidae) and their host ants (Hymenoptera: Formicidae). Sociobiology, 25: 1–276.

    Google Scholar 

  • Alpert, GD, Ritcher, P. 1975. Notes on the life cycle and myrmecophilous adaptations of Cremastocheilus armatus (Coleoptera: Scarabaeidae). Psyche, 82: 283–291.

    Article  Google Scholar 

  • Andries, M. 1912. Zur Systematik, Biologie und Entwicklung von Microdon Meigen. Zeitschrift für Wissenschaftliche Zoologie, 103: 300–361.

    Google Scholar 

  • Bagnères, AG, Morgan, ED. 1991. The postpharyngeal glands and the cuticle of Formicidae contain the same characteristic hydrocarbons. Experientia, 47: 106–111.

    Article  Google Scholar 

  • Barr, B. 1995. Feeding behaviour and mouthpart structure of larvae of Microdon eggeri and Microdon mutabilis (Diptera, Syrphidae). Dipterists Digest, 2: 1–36.

    Google Scholar 

  • Bonavita-Cougourdan, A, Clement, J-L, Lange, C. 1993. Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus Scop.: Polymorphism of cuticular hydrocarbon patterns. Journal of Chemical Ecol ogy, 19: 1461–1477.

    Article  CAS  Google Scholar 

  • Bousquet, Y, Laplante, S. 2006. Coleoptera Histeridae. Vol. 24. Ottawa: NRC Research Press.

    Google Scholar 

  • Brandstaetter, AS, Endler, A, Kleineidam, CJ. 2008. Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften, 95: 601–608.

    Article  CAS  PubMed  Google Scholar 

  • Brandstaetter, AS, Kleineidam, CJ. 2011. Distributed representation of social odors indicates parallel processing in the antennal lobe of ants. Journal of Neurophysiology, 106: 2437–2449.

    Article  PubMed  Google Scholar 

  • Brandstaetter, AS, Rössler, W, Kleineidam, CJ. 2011. Friends and foes from an ant brain’s point of view – neuronal correlates of colony odors in a social insect. PLOS One, 6: e21383–21392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, CG, Funk, DJ. 2005. Aspects of the natu ral history of Neochlamisus (Coleoptera: Chrysomelidae): Fecal case-associated life history and behavior, with a method for studying insect constructions. Annals of the Entomological Society of Amer i ca, 98: 711–725.

    Article  Google Scholar 

  • Cazier, MA, Mortenson, MA. 1965. The behavior and habits of the myrmecophilous scarab Cremastocheilus. Journal of the Kansas Entomological Society, 38: 19–44.

    Google Scholar 

  • Crozier, RH, Dix, MW. 1979. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behavioral Ecology and Sociobiology, 4: 217–224.

    Article  Google Scholar 

  • Dettner, K, Liepert, C. 1994. Chemical mimicry and camouflage. Annual Review of Entomology, 39: 129–154.

    Article  CAS  Google Scholar 

  • Donisthorpe, HSJK. 1902. The life history of Clytra quadripunctata. Transactions of the Entomological Society of London, 50: 11–23.

    Article  Google Scholar 

  • Donisthorpe, HSJK. 1927. The guests of British ants. London: George Routledge and Sons.

    Google Scholar 

  • Downes, MF, Skevington, JH, Thompson, F. 2017. A new ant inquiline flower fly (Diptera: Syrphidae: Pipizinae) from Australia. Australian Entomologist, 44: 29–38.

    Google Scholar 

  • Drijfhout, F, Kather, R, Martin, SJ. 2009. The role of cuticular hydrocarbons in insects. In Behavioral and chemical ecology, ed. W Zhang, H Liu, 24. Hauppauge, NY: Nova Science Publishers.

    Google Scholar 

  • Duffield, R. 1981. Biology of Microdon fuscipennis (Diptera: Syrphidae) with interpretations of the reproductive strategies of Microdon species found North of Mexico. Proceedings of the Entomological Society of Washington, 83: 716–724.

    Google Scholar 

  • Eisner, T, Eisner, M. 2000. Defensive use of a fecal thatch by a beetle larva (Hemisphaerota cyanea). Proceedings of the National Academy of Sciences, 97: 2632–2636.

    Article  CAS  Google Scholar 

  • Eisner, T, van Tassell, E, Carrel, JE. 1967. Defensive use of a “fecal shield” by a beetle larva. Science, 158: 1471–1473.

    Article  CAS  PubMed  Google Scholar 

  • Elmes, G, Barr, B, Thomas, J, Clarke, R. 1999. Extreme host specificity by Microdon mutabilis (Diptera: Syrphiae), a social parasite of ants. Proceedings of the Royal Society of London. Series B: Biological Sciences, 266: 447–453.

    Google Scholar 

  • Erber, D. 1968. Bau, Funktion und Bildung der Kotpresse mitteleuropäischer Clytrinen und Cryptocephalinen (Coleoptera, Chrysomelidae). Zeitschrift für Morphologie der Tiere, 62: 245–306.

    Article  Google Scholar 

  • Erber, D. 1969. Beitrag zur Entwicklungsbiologie mitteleuropäischer Clytrinen und Cryptocephalinen (Coleoptera, Chrysomelidae). Zoologische Jahrbücher, 96: 453–477.

    Google Scholar 

  • Erber, D. 1988. Biology of the Camptosomata: Clytrinae, Cryptocephalinae, Chlamisinae, and Lamprosomatinae. In Biology of Chrysomelidae, ed. P Jolivet, E Petitpierre, T Hsiao, 513–552. Norwell, MA: Kluwer.

    Chapter  Google Scholar 

  • Escherich, K. 1906. Die Ameise. Schilderung ihrer Lebensweise. Braunschweig: Fr. Vieweg & Sohn.

    Book  Google Scholar 

  • Ferguson, ST, Park, KY, Ruf, AA, Bakis, I, Zwiebel, LJ. 2020. Odor coding of nestmate recognition in the eusocial ant Camponotus floridanus. Journal of Experimental Biology, 223: 10.

    Google Scholar 

  • Forti, LC, Camargo, RS, Verza, SS, Andrade, APP, Fujihara, RT, Lopes, JF. 2007. Microdon tigrinus Curran, 1940 (Diptera, Syrphidae): Populational fluctuation and specificity to the nest of Acromyrmex coronatus (Hymenoptera: Formicidae). Sociobiology, 50: 909–919.

    Google Scholar 

  • Funaro, CF, Böröczky, K, Vargo, EL, Schal, C. 2018. Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proceedings of the National Academy of Sciences, 115: 3888–3893.

    Article  CAS  Google Scholar 

  • Funaro, CF, Schal, C, Vargo, EL. 2019. Queen and king recognition in the subterranean termite, Reticulitermes flavipes: Evidence for royal recognition pheromones. PLOS One, 14: e0209810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaedike, R. 2019. Tineidae II: (Myrmecozelinae, Perissomasticinae, Tineinae, Hieroxestinae, Teichobiinae, and Stathmopolitinae). Leiden, The Netherlands: Koninklijke Brill.

    Book  Google Scholar 

  • Garnett, WB, Akre, RD, Sehlke, G. 1985. Cocoon mimicry and predation by myrmecophilous Diptera (Diptera: Syrphidae). Florida Entomologist, 68: 615–621.

    Article  Google Scholar 

  • Greene, MJ, Gordon, DM. 2003. Cuticular hydrocarbons inform task decisions. Nature, 423: 32.

    Article  CAS  PubMed  Google Scholar 

  • Greene, MJ, Gordon, DM. 2007. Structural complexity of chemical recognition cues affects the perception of group membership in the ants Linephithema humile and Aphaenogaster cockerelli. Journal of Experimental Biology, 210: 897–905.

    Article  CAS  PubMed  Google Scholar 

  • Guerrieri, FJ, Nehring, V, Jørgensen, CG, Nielsen, J, Galizia, CG, d’Ettorre, P. 2009. Ants recognize foes and not friends. Proceedings of the Royal Society B: Biological Sciences, 276: 2461–2468.

    Article  CAS  PubMed Central  Google Scholar 

  • Guillem, RM, Drijfhout, F, Martin, SJ. 2014. Chemical deception among ant social parasites. Current Zoology, 60: 62–75.

    Article  Google Scholar 

  • Guillem, RM, Drijfhout, FP, Martin, SJ. 2016. Species-specific cuticular hydrocarbon stability within European Myrmica ants. Journal of Chemical Ecology, 42: 1052–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hefetz, A. 2007. The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae) – interplay of colony odor uniformity and odor idiosyncrasy. Myrmecological News, 10: 59–68.

    Google Scholar 

  • Hölldobler, B. 1967. Zur Physiologie der Gast-Wirt-Beziehung (Myrmecophilie) bei Ameisen, I: Das Gastverhältnis der Atemeles- und Lomechusa-Larven (Col. Staphylinidae) zu Formica (Hym. Formicidae). Zeitschrift für vergleichende Physiologie, 56: 1–21.

    Article  Google Scholar 

  • Hölldobler, B. 1971. Communication between ants and their guests. Scientific American, 224: 86–93.

    Article  Google Scholar 

  • Hölldobler, B, Kwapich, CL. 2019. Behavior and exocrine glands in the myrmecophilous beetle Dinarda dentata (Gravenhorst, 1806) (Coleoptera: Staphylinidae: Aleocharinae). PLOS One, 14: e0210524.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hölldobler, B, Kwapich, CL, Haight, KL. 2018. Behavior and exocrine glands in the myrmecophilous beetle Lomechusoides strumosus (Fabricius, 1775) (formerly called Lomechusa strumosa) (Coleoptera: Staphylinidae: Aleocharinae). PLOS One, 13: e0200309.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hölldobler, B, Lumsden, CJ. 1980. Territorial strategies in ants. Science, 210: 732–739.

    Article  PubMed  Google Scholar 

  • Hölldobler, B, Möglich, M, Maschwitz, U. 1981. Myrmecophilic relationship of Pella (Coleoptera: Staphylinidae) to Lasius fuliginosus (Hymenoptera: Formicidae). Psyche, 88: 347–374.

    Article  Google Scholar 

  • Hölldobler, B, Wilson, EO. 1990. The ants. Cambridge, MA: Belknap Press of Harvard University Press.

    Book  Google Scholar 

  • Hölldobler, B, Wilson, EO. 2009. The superorganism: The beauty, elegance, and strangeness of insect societies. New York: W. W. Norton & Company.

    Google Scholar 

  • Hölldobler, K. 1929. Über die Entwicklung der Schwirrfliege Xanthogramma citrofasciatum im Neste von Lasius alienus und niger. Zoologischer Anzeiger (Wasmann-Festband), 82: 171–176.

    Google Scholar 

  • Hovestadt, T, Thomas, JA, Mitesser, O, Elmes, GW, Schönrogge, K. 2012. Unexpected benefit of a social parasite for a key fitness component of its ant host. American Naturalist, 179: 110–123.

    Article  PubMed  Google Scholar 

  • Howard, RW, Akre, RD, Garnett, WB. 1990. Chemical mimicry in an obligate predator of carpenter ants (Hymenoptera: Formicidae). Annals of the Entomological Society of America, 83: 607–616.

    Article  CAS  Google Scholar 

  • Howard, RW, Blomquist, GJ. 2005. Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annual Review of Entomology, 50: 371–393.

    Article  CAS  PubMed  Google Scholar 

  • Howard, RW, McDaniel, C, Blomquist, GJ. 1980. Chemical mimicry as an integrating mechanism: Cuticular hydrocarbons of a termitophile and its host. Science, 210: 431–433.

    Article  CAS  PubMed  Google Scholar 

  • Howard, RW, Stanley-Samuelson, DW, Akre, RD. 1990. Biosynthesis and chemical mimicry of cuticular hydrocarbons from the obligate predator, Microdon albicomatus Novak (Diptera: Syrphidae) and its ant prey, Myrmica incompleta Provancher (Hymenoptera: Formicidae). Journal of the Kansas Entomological Society, 63: 437–443.

    Google Scholar 

  • Huxley, J. 1966. A discussion on ritualization of behaviour in animals and man. Philosophical Transactions of the Royal Society (London) B, 251: 249–271.

    Google Scholar 

  • Kaib, M, Eisermann, B, Schoeters, E, Billen, J, Franke, S, Francke, W. 2000. Task-related variation of postpharyngeal and cuticular hydrocarbon compositions in the ant Myrmicaria eumenoides. Journal of Comparative Physiology A, 186: 939–948.

    Article  CAS  Google Scholar 

  • Kather, R, Martin, SJ. 2015. Evolution of cuticular hydrocarbons in the Hymenoptera: A meta-analysis. Journal of ChemicalEcology, 41: 871–883.

    CAS  Google Scholar 

  • Kelber, C, Rössler, W, Kleineidam, CJ. 2010. Phenotypic plasticity in number of glomeruli and sensory innervation of the antennal lobe in leaf-cutting ant workers (A. vollenweideri). Developmental Neurobiology, 70: 222–234.

    Article  PubMed  Google Scholar 

  • Kemner, NVA. 1923. Hyphaenosymphilie, eine neue, merkwürdige Art von Myrmekophilie bei einem neuen myrmekophilen Schmetterling (Wurthia aurivillii n. Sp.) aus Java beobachtet. Arkiv för Zoologi, 15: 1–28.

    Google Scholar 

  • Kloft, WJ, Woodruff, RE, Kloft, ES. 1979. Formica integra (Hymenoptera: Formicidae), IV: Exchange of food and trichome secretions between worker ants and the inquiline beetle, Cremastocheilus castaneus (Coleoptera: Scarabaeidae). Tijdschrift voor Entomologie, 122: 47–57.

    Google Scholar 

  • Lackner, T, Hlaváč, P. 2012. Description of a new species of Sternocoelis from Morocco with proposal of the Sternocoelis marseulii species group (Coleoptera, Histeridae). ZooKeys, 181: 11–21.

    Article  Google Scholar 

  • Lackner, T, Yélamos, T. 2001. Contribution to the knowledge of the Moroccan fauna of Sternocoelis Lewis, 1888 and Eretmotus Lacordaire, 1854 (Coleoptera: Histeridae). Zapateri Revista Aragon Entomology, 9: 99–102.

    Google Scholar 

  • Lahav, S, Soroker, V, Hefetz, A, Vander Meer, RK. 1999. Direct behavioral evidence for hydrocarbons as ant recognition discriminators. Naturwissenschaften, 86: 246–249.

    Article  CAS  Google Scholar 

  • Lee, JE, Morimoto, K. 1991. Descriptions of the egg and first-instar larva of Clytra arida Weise (Coleoptera: Chrysomelidae). Journal of the Faculty of Agriculture, Kyushu University, 35: 93–99.

    Article  Google Scholar 

  • Lenoir, A, Chalon, Q, Carvajal, A, Ruel, C, Barroso, A, Lackner, T, Boulay, R. 2012. Chemical integration of myrmecophilous guests in Aphaenogaster ant nests. Psyche: 840860.

    Google Scholar 

  • Lenoir, A, d’Ettorre, P, Errard, C, Hefetz, A. 2001. Chemical ecology and social parasitism in ants. Annual Review of Entomology, 46: 573–599.

    Article  CAS  PubMed  Google Scholar 

  • Lenoir, A, Fresneau, D, Errard, C, Hefetz, A. 1999. Individuality and colonial identity in ants: The emergence of the social representation concept. In Information processing in social insects, 219–237. Basel, Switzerland: Birkhäuser Verlag.

    Chapter  Google Scholar 

  • Liang, D, Silverman, J. 2000. “You are what you eat”: Diet modifies cuticular hydrocarbons and nestmate recognition in the Argentine ant, Linepithema humile. Naturwissenschaften, 87: 412–416.

    Article  CAS  PubMed  Google Scholar 

  • Liebig, J. 2010. Hydrocarbon profiles indicate fertility and dominance status in ant, bee, and wasp colonies. In Insect hydrocarbons: Biology, biochemistry, and chemical ecology, ed. GJ Blomquist, AG Bagnères, 254–281. Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Liebig, J, Peeters, C, Oldham, NJ, Markstädter, C, Hölldobler, B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proceedings of the National Academy of Sciences, 97: 4124–4131.

    Article  CAS  Google Scholar 

  • Lucas, C, Pho, D, Jallon, J, Fresneau, D. 2005. Role of cuticular hydrocarbons in the chemical recognition between ant species in the Pachycondyla villosa species complex. Journal of Insect Physiology, 51: 1148–1157.

    Article  CAS  PubMed  Google Scholar 

  • Martin, JO. 1922. Studies in the genus Hetaerius (Co., Hiseridae). Entomological News, 33: 272–277.

    Google Scholar 

  • Martin, S, Drijfhout, F. 2009a. A review of ant cuticular hydrocarbons. Journal of Chemical Ecology, 35: 1151–1161.

    Article  CAS  PubMed  Google Scholar 

  • Martin, S, Drijfhout, F. 2009b. Nestmate and task cues are influenced and encoded differently within ant cuticular hydrocarbon profiles. Journal of Chemical Ecology, 35: 368–374.

    Article  CAS  PubMed  Google Scholar 

  • Maruyama, M, Akino, T, Hashim, R, Komatsu, T. 2009. Behavior and cuticular hydrocarbons of myrmecophilous insects (Coleoptera: Staphylinidae; Diptera: Phoridae; Thysanura) associated with Asian Aenictus army ants (Hymenoptera; Formicidae). Sociobiology, 54: 19–35.

    Google Scholar 

  • Maruyama, M, Komatsu, T, Kudo, S, Shimada, T, Kinomura, K. 2013. The guests of Japanese Ants. Hadanoshi, Kanagawa, Japan: Tokai University Press.

    Google Scholar 

  • Morel, L, Vander Meer, RK, Lavine, BK. 1988. Ontogeny of nestmate recognition cues in the red carpenter ant (Camponotus floridanus). Behavioral Ecology and Sociobiology, 22: 175–183.

    Article  Google Scholar 

  • Mynhardt, G, Wenzel, JW. 2010. Phylogenetic analysis of the myrmecophilous Cremastocheilus Knoch (Coleoptera, Scarabaeidae, Cetoniinae), based on external adult morphology. ZooKeys, 34: 129–140.

    Article  Google Scholar 

  • Nedeljković, Z, Ricarte, A, Zorić, LŠ, Đan, M, Obreht-Vidaković, D, Vujić, A. 2018. The genus Xanthogramma Schiner, 1861 (Diptera: Syrphidae) in southeastern Europe, with descriptions of two new species. Canadian Entomologist, 150: 440–464.

    Article  Google Scholar 

  • Nehring, V, Evison, SE, Santorelli, LA, d’Ettorre, P, Hughes, WO. 2011. Kin-informative recognition cues in ants. Proceedings of the Royal Society B: Biological Sciences, 278: 1942–1948.

    Article  Google Scholar 

  • Neupert, S, Hornung, M, Grenwille Millar, J, Kleineidam, CJ. 2018. Learning distinct chemical labels of nestmates in ants. Frontiers in Behavioral Neuroscience, 12: 12.

    Article  Google Scholar 

  • Nogueira-de-Sá, F, Trigo, JR. 2002. Do fecal shields provide physical protection to larvae of the tortoise beetles Plagiometriona flavescens and Stolas chalybea against natural enemies? Entomologia Experimentalis et Applicata, 104: 203–206.

    Article  Google Scholar 

  • Olmstead, KL, Denno, RF. 1993. Efectiveness of tortoise beetle larval shields against different predator species. Ecology, 74: 1394–1405.

    Article  Google Scholar 

  • Orivel, J, Servigne, P, Cerdan, P, Dejean, A, Corbara, B. 2004. The ladybird Thalassa saginata, an obligatory myrmecophile of Dolichoderus bidens ant colonies. Naturwissenschaften, 91: 97–100.

    Article  CAS  PubMed  Google Scholar 

  • Ozaki, M, Wada-Katsumata, A, Fujikawa, K, Iwasaki, M, Yokohari, F, Satoji, Y, Nisimura, T, Yamaoka, R. 2005. Ant nestmate and non-nestmate discrimination by a chemosensory sensillum. Science, 309: 311–314.

    Article  CAS  PubMed  Google Scholar 

  • Parmentier, T. 2019. Host following of an ant associate during nest relocation. Insectes Sociaux, 66: 329–332.

    Article  Google Scholar 

  • Parmentier, T, Bouillon, S, Dekoninck, W, Wenseleers, T. 2016a. Trophic interactions in an ant nest microcosm: A combined experimental and stable isotope (δ13C/δ15N) approach. Oikos, 125: 1182–1192.

    Article  CAS  Google Scholar 

  • Parmentier, T, Claus, R, De Laender, F, Bonte, D. 2021. Moving apart together: Co-movement of a symbiont community and their ant host, and its importance for community assembly. Movement Ecology, 9: 1–15.

    Article  Google Scholar 

  • Parmentier, T, Dekoninck, W, Wenseleers, T. 2016b. Do well-integrated species of an inquiline community have a lower brood predation tendency? A test using red wood ant myrmecophiles. BMC Evolutionary Biology, 16: 1–12.

    Article  Google Scholar 

  • Parmentier, T, Dekoninck, W, Wenseleers, T. 2017a. Arthropods associate with their red wood ant host without matching nestmate recognition cues. Journal of Chemical Ecology, 43: 644–661.

    Article  CAS  PubMed  Google Scholar 

  • Parmentier, T, De Laender, F, Wenseleers, T, Bonte, D. 2018. Prudent behavior rather than chemical deception enables a parasite to exploit its ant host. Behavioral Ecology, 29: 1225–1233.

    Google Scholar 

  • Peeters, C, Liebig, J. 2009. Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. In Organization of insect societies: From genome to socio-complexity, ed. J Gadau, J Fewell, 220–242. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Pérez-Lachaud, G, Jervis, MA, Reemer, M, Lachaud, J-P. 2014. An unusual, but not unexpected, evolutionary step taken by syrphid flies: The first record of true primary parasitoidism of ants by Microdontinae. Biological Journal of the Linnean Society, 111: 462–472.

    Article  Google Scholar 

  • Pierce, NE. 1995. Predatory and parasitic Lepidoptera: Carnivores living on plants. Journal of the Lepidopterists’ Society, 49: 412–453.

    Google Scholar 

  • Reemer, M. 2013. Review and phylogenetic evaluation of associations between Microdontinae (Diptera: Syrphidae) and ants (Hymenoptera: Formicidae). Psyche, 2013: 538316.

    Google Scholar 

  • Reemer, M, Ståhls, G. 2013a. Generic revision and species classification of the Microdontinae (Diptera, Syrphidae). ZooKeys, 288: 1–213.

    Article  Google Scholar 

  • Reemer, M, Ståhls, G. 2013b. Phylogenetic relationships of Microdontinae (Diptera: Syrphidae) based on molecular and morphological characters. Systematic Entomology, 38: 661–688.

    Article  Google Scholar 

  • Rettenmeyer, CW. 1963. The behavior of Thysanura found with army ants. Annals of the Entomological Society of America, 56: 170–174.

    Article  Google Scholar 

  • Roepke, W. 1925. Eine neue myrmekophile Tineide aus Java: Hypophrictoides dolichoderella n. g. n. sp. Tijdschrift voor Entomologie, 68: 175–194.

    Google Scholar 

  • Schal, C, Sevala, VL, Young, HP, Bachmann, JA. 1998. Sites of synthesis and transport pathways of insect hydrocarbons: Cuticle and ovary as target tissues. American Zoologist, 38: 382–393.

    Article  CAS  Google Scholar 

  • Schmid, VS, Morales, MN, Marinoni, L, Kamke, R, Steiner, J, Zillikens, A, Jeanne, R. 2014. Natural history and morphology of the hoverfly Pseudomicrodon biluminiferus and its parasitic relationship with ants nesting in bromeliads. Journal of Insect Science, 14: 21.

    Article  Google Scholar 

  • Schöller, M. 2011. Larvae of case-bearing leaf beetles (Coleoptera: Chrysomelidae: Cryptocephalinae). Acta Entomologica Musei Nationalis Pragae, 51: 747–748.

    Google Scholar 

  • Sharma, KR, Enzmann, BL, Schmidt, Y, Moore, D, Jones, GR, Parker, J, Berger, SL, Reinberg, D, Zwiebel, LJ, Breit, B, Liebig, J, Ray, A. 2015. Cuticular hydrocarbon pheromones for social behavior and their coding in the ant antenna. Cell Reports, 12: 1261–1271.

    Article  CAS  PubMed  Google Scholar 

  • Singer, TL. 1998. Roles of hydrocarbons in the recognition systems of insects. American Zoologist, 38: 394–405.

    Article  CAS  Google Scholar 

  • Skwarra, E. 1927. Über die Ernährungsweise der Larven von Clytra quadripunctata (L.). Zoologischer Anzeiger, 50: 83–96.

    Google Scholar 

  • Smith, AA, Hölldobler, B, Liebig, J. 2008. Hydrocarbon signals explain the pattern of worker and egg policing in the ant Aphaenogaster cockerelli. Journal of Chemical Ecology, 34: 1275–1282.

    Article  CAS  PubMed  Google Scholar 

  • Smith, AA, Hölldober, B, Liebig, J. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Current Biology, 19: 78–81.

    Article  CAS  PubMed  Google Scholar 

  • Smith, AA, Liebig, J. 2017. The evolution of cuticular fertility signals in eusocial insects. Current Opinion in Insect Science, 22: 79–84.

    Article  PubMed  Google Scholar 

  • Soroker, V, Fresneau, D, Hefetz, A. 1998. Formation of colony odor in ponerine ant Pachycondyla apicalis. Journal of Chemical Ecology, 24: 1077–1090.

    Article  CAS  Google Scholar 

  • Soroker, V, Hefetz, A. 2000. Hydrocarbon site of synthesis and circulation in the desert ant Cataglyphis niger. Journal of Insect Physiology, 46: 1097–1102.

    Article  CAS  PubMed  Google Scholar 

  • Soroker, V, Hefetz, A, Cojocaru, M, Billen, J, Franke, S, Francke, W. 1995a. Structural and chemical ontogeny of the postpharyngeal gland in the desert ant Cataglyphis niger. Physiological Entomology, 20: 323–329.

    Article  CAS  Google Scholar 

  • Soroker, V, Vienne, C, Hefetz, A. 1995b. Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenoptera: Formicidae). Journal of Chemical Ecology, 21: 365–378.

    Article  CAS  PubMed  Google Scholar 

  • Soroker, V, Vienne, C, Hefetz, A, Nowbahari, E. 1994. The postpharyngeal gland as a “Gestalt” organ for nestmate recognition in the ant Cataglyphis niger. Naturwissenschaften, 81: 510–513.

    CAS  Google Scholar 

  • Speight, M. 2017. Species accounts of European Syrphidae (Diptera), Glasgow 2011. In Syrph the Net, the Database of European Syrphidae, vol. 65, ed. MCD Speight, E Castella, J-P Sarthou, C Monteil, 285. Dublin: Trinity College Department of Zoology.

    Google Scholar 

  • Sprenger, PP, Menzel, F. 2020. Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: How and why they differ among individuals, colonies, and species. Myrmecological News, 30: 1–26.

    Google Scholar 

  • Stiefel, VL, Margolies, DC. 1998. Is host plant choice by a clytrine leaf beetle mediated through interactions with the ant Crematogaster lineolata? Oecologia, 115: 434–438.

    Article  PubMed  Google Scholar 

  • Stiefel, VL, Nechols, JR, Margolies, DC. 1995. Overwintering biology of Anomoea flavokansiensis (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America, 88: 342–347.

    Article  Google Scholar 

  • Sturgis, SJ, Gordon, DM. 2012. Nestmate recognition in ants (Hymenoptera: Formicidae): A review. Myrmecological News, 16: 101–110.

    Google Scholar 

  • Vander Meer, RK, Jouvenaz, DP, Wojcik, DP. 1989. Chemical mimicry in a parasitoid (Hymenoptera: Eucharitidae) of fire ants (Hymenoptera: Formicidae). Journal of Chemical Ecology, 15: 2247–2261.

    Article  CAS  PubMed  Google Scholar 

  • Vander Meer, RK, Wojcik, DP. 1982. Chemical mimicry in the myrmecophilous beetle Myrmecaphodius excavaticollis. Science, 218: 806–808.

    Article  CAS  Google Scholar 

  • Van Pelt, AF, Van Pelt, SA. 1972. Microdon (Diptera: Syrphidae) in nests of Monomorium (Hymenoptera: Formicidae) in Texas. Annals of the Entomological Society ofAmerica, 65: 977–979.

    Article  Google Scholar 

  • van Zweden, J, Brask, JB, Christensen, JH, Boomsma, JJ, Linksvayer, TA, d’Ettorre, P. 2010. Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. Journal of Evolutionary Biology, 23: 1498–1508.

    Article  PubMed  Google Scholar 

  • van Zweden, JS, d’Ettorre, P. 2010. Nestmate recognition in social insects and the role of hydrocarbons. In Insect hydrocarbons: Biology, biochemistry, and chemical ecology, ed. GJ Blomquist, A-G Bagnères, 222–243. Cambridge, UK: Cambridge University Press.

    Chapter  Google Scholar 

  • Vencl, FV, Morton, TC, Mumma, RO, Schultz, JC. 1999. Shield defense of a larval tortoise beetle. Journal of Chemical Ecology, 25: 549–566.

    Article  CAS  Google Scholar 

  • von Beeren, C, Brückner, A, Hoenle, PO, Ospina-Jara, B, Kronauer, DJ, Blüthgen, N. 2021b. Multiple phenotypic traits as triggers of host attacks towards ant symbionts: Body size, morphological gestalt, and chemical mimicry accuracy. Frontiers in Zoology, 18: 1–18.

    Google Scholar 

  • von Beeren, C, Hashim, R, Witte, V. 2012a. The social integration of a myrmecophilous spider does not depend exclusively on chemical mimicry. Journal of Chemical Ecology, 38: 262–271.

    Article  CAS  Google Scholar 

  • von Beeren, C, Pohl, S, Witte, V. 2012b. On the use of adaptive resemblance terms in chemical ecology. Psyche: 635761.

    Google Scholar 

  • Wagner, D, Brown, MJ, Broun, P, Cuevas, W, Moses, LE, Chao, DL, Gordon, DM. 1998. Task-related differences in the cuticular hydrocarbon composition of harvester ants, Pogonomyrmex barbatus. Journal of Chemical Ecology, 24: 2021–2037.

    Article  CAS  Google Scholar 

  • Wallace, J. 1970. Defensive function of a case on a chrysomelid larva. Journal of the Georgia Entomological Society, 5: 19–24.

    Google Scholar 

  • Wasmann, E. 1903. Zur näheren Kenntnis des echten Gastverhältnisses (Symphilie) bei den Ameisen- und Termitengästen. Biologisches Zentralblatt, 23: 63–72, 195–207, 232–248, 261–276, 298–310.

    Google Scholar 

  • Wasmann, E. 1905. Zur Lebensweise einiger in- und ausländischen Arneisengäste. Zeitschrift für wissenschaftliche Insektenbiologie, 10: 329.

    Google Scholar 

  • Wasmann, E. 1920. Die Gastpflege der Ameisen. Berlin: Verlag Gebrüder.

    Google Scholar 

  • Wheeler, WM. 1908a. Studies on myrmecophiles, II: Hetaerius. Journal of the New York Entomological Society, 16: 135–143.

    Google Scholar 

  • Wheeler, WM. 1910. Ants: Their structure, development and behavior. New York: Columbia University Press.

    Google Scholar 

  • Witte, V. 2001. Organisation und Steuerung des Treiberameisenverhaltens bei südostasiatischen Ponerinen der Gattung Leptogenys. PhD dissertation, J. W. Goethe-Universität, Frankfurt/Main.

    Google Scholar 

  • Witte, V, Lehmann, L, Lustig, A, Maschwitz, U. 2009. Polyrhachis lama, a parasitic ant with an exceptional mode of social integration. Insectes Sociaux, 56: 301–307.

    Article  Google Scholar 

  • Wojcik, D, Smittle, B, Cromroy, H. 1991. Fire ant myrmecophiles: Feeding relationships of Martinezia dutertrei and Euparia castanea (Coleoptera: Scarabaeidae) with their host ants, Solenopsis spp. (Hymenoptera: Formicidae). Insectes Sociaux, 38: 273–281.

    Article  Google Scholar 

  • Yélamos, T. 1995. Revision of the genus Sternocoelis Lewis, 1888 (Coleoptera: Histeridae), with a proposed phylogeny. Revue Suisse de Zoologie, 102: 113–174.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Herausgeber bzw. der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hölldobler, B., Kwapich, C. (2023). Erkennung, Identitätsdiebstahl und Tarnung. In: Die Gäste der Ameisen. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66526-8_3

Download citation

Publish with us

Policies and ethics

Navigation