Spezielle Anwendungen

  • Chapter
  • First Online:
Patch-Clamp-Technik

Zusammenfassung

Das grundlegende Messprinzip der Patch-Clamp-Technik ist schon bald nach den ersten Veröffentlichungen in vielfältiger Weise angepasst und erweitert worden. Manche dieser Variationen haben völlig neue Parameter erschlossen, andere haben komplexere Präparationen zugänglich gemacht oder die Technik für große Messreihen optimiert. In diesem Kapitel werden die zwölf wichtigsten Abwandlungen und Erweiterungen der Patch-Clamp-Technik vorgestellt. Was kann man mit der jeweiligen Technik messen? Welche Prinzipien liegen der Anwendung zugrunde? Worauf muss man besonders achten? Ziel ist es, jeweils einen kurzen Überblick über Sinn und Zweck der Anwendungen zu bieten und den Zugang zur jeweiligen Spezialliteratur zu erleichtern.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Anson BD, Roberts WM (2002) Loose-patch voltage-clamp technique. In: Walz W, Boulton AA, Baker GB (Hrsg) Patch-clamp analysis: Advanced techniques. Humana Press, Totowa, NJ, S 265–286

    Chapter  Google Scholar 

  • Aquila M, Benedusi M, Fasoli A, Rispoli G (2015) Characterization of zebrafish green cone photoresponse recorded with pressure-polished patch pipettes, yielding efficient intracellular dialysis. PLoS ONE 10:e0141727

    Article  PubMed  PubMed Central  Google Scholar 

  • Audinat E, Lambolez B, Rossier J (1996) Functional and molecular analysis of glutamate-gated channels by patch-clamp and rt-pcr at the single cell level. Neurochem Int 28:119–136

    Article  CAS  PubMed  Google Scholar 

  • Brecht M, Schneider M, Sakmann B, Margrie TW (2004) Whisker movements evoked by stimulation of single pyramidal cells in rat motor cortex. Nature 427:704–710

    Article  CAS  PubMed  Google Scholar 

  • Cadwell CR, Scala F, Li S et al (2017) Multimodal profiling of single-cell morphology, electrophysiology, and gene expression using patch-seq. Nat Protoc 12:2531–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daniel J, Polder HR, Lessmann V, Brigadski T (2013) Single-cell juxtacellular transfection and recording technique. Pflugers Arch 465:1637–1649

    Article  CAS  PubMed  Google Scholar 

  • Davie JT, Kole MH, Letzkus JJ, Rancz EA, Spruston N, Stuart GJ, Hausser M (2006) Dendritic patch-clamp recording. Nat Protoc 1:1235–1247

    Article  CAS  PubMed  Google Scholar 

  • de Curtis M, Librizzi L, Uva L (2016) The in vitro isolated whole guinea pig brain as a model to study epileptiform activity patterns. J Neurosci Methods 260:83–90

    Article  PubMed  Google Scholar 

  • Dunlop J, Bowlby M, Peri R, Vasilyev D, Arias R (2008) High-throughput electrophysiology: An emerging paradigm for ion-channel screening and physiology. Nat Rev Drug Discov 7:358–368

    Article  CAS  PubMed  Google Scholar 

  • Eberwine J, Yeh H, Miyashiro K et al (1992) Analysis of gene expression in single live neurons. Proc Natl Acad Sci U S A 89:3010–3014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Espinoza C, Guzman SJ, Zhang X, Jonas P (2018) Parvalbumin(+) interneurons obey unique connectivity rules and establish a powerful lateral-inhibition microcircuit in dentate gyrus. Nat Commun 9:4605

    Article  PubMed  PubMed Central  Google Scholar 

  • Fejtl M, Czubayko U, Hummer A, Krauter T, Lepple-Wienhues A (2007) Flip-the-tip: Automated patch clam** based on glass electrodes. Methods Mol Biol 403:71–85

    Article  CAS  PubMed  Google Scholar 

  • Gillis KD (2000) Admittance-based measurement of membrane capacitance using the epc-9 patch-clamp amplifier. Pflugers Arch 439:655–664

    Article  CAS  PubMed  Google Scholar 

  • Goaillard JM, Marder E (2006) Dynamic clamp analyses of cardiac, endocrine, and neural function. Physiology (Bethesda) 21:197–207

    PubMed  Google Scholar 

  • Gurkiewicz M, Korngreen A (2006) Recording, analysis, and function of dendritic voltage-gated channels. Pflugers Arch 453:283–292

    Article  CAS  PubMed  Google Scholar 

  • Horn R, Marty A (1988) Muscarinic activation of ionic currents measured by a new whole-cell recording method. J Gen Physiol 92:145–159

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Shu Y (2012) Axonal bleb recording. Neurosci Bull 28:342–350

    Article  PubMed  PubMed Central  Google Scholar 

  • Jouhanneau JS, Kremkow J, Poulet JFA (2018) Single synaptic inputs drive high-precision action potentials in parvalbumin expressing gaba-ergic cortical neurons in vivo. Nat Commun 9:1540

    Article  PubMed  PubMed Central  Google Scholar 

  • Kamen Y, Karadottir RT (2021) Combining whole-cell patch clamp and dye loading in acute brain slices with bulk rna sequencing in embryonic to aged mice. STAR Protoc 2:100439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Guzman SJ, Hu H, Jonas P (2012) Active dendrites support efficient initiation of dendritic spikes in hippocampal ca3 pyramidal neurons. Nat Neurosci 15:600–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitamura K, Judkewitz B, Kano M, Denk W, Hausser M (2008) Targeted patch-clamp recordings and single-cell electroporation of unlabeled neurons in vivo. Nat Methods 5:61–67

    Article  CAS  PubMed  Google Scholar 

  • Lindau M (2012) High resolution electrophysiological techniques for the study of calcium-activated exocytosis. Biochim Biophys Acta 1820:1234–1242

    Article  CAS  PubMed  Google Scholar 

  • Margrie TW, Brecht M, Sakmann B (2002) In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflugers Arch 444:491–498

    Article  CAS  PubMed  Google Scholar 

  • Marrero HG, Lemos JR (2007) Loose-patch-clamp method. In: Walz W (Hrsg) Patch-clamp analysis: Advanced techniques. Humana Press, Totowa, NJ, S 325–352

    Chapter  Google Scholar 

  • Martina M, Schultz JH, Ehmke H, Monyer H, Jonas P (1998) Functional and molecular differences between voltage-gated k+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus. J Neurosci 18:8111–8125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marx M, Gunter RH, Hucko W, Radnikow G, Feldmeyer D (2012) Improved biocytin labeling and neuronal 3d reconstruction. Nat Protoc 7:394–407

    Article  CAS  PubMed  Google Scholar 

  • Neher E (2006) A comparison between exocytic control mechanisms in adrenal chromaffin cells and a glutamatergic synapse. Pflugers Arch 453:261–268

    Article  CAS  PubMed  Google Scholar 

  • Neher E, Marty A (1982) Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc Natl Acad Sci U S A 79:6712–6716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi A, Ikegaya Y, Matsumoto, N (2021) In vivo whole-cell patch-clamp methods: Recent technical progress and future perspectives. Sensors (Basel) 21

    Google Scholar 

  • Pei X, Volgushev M, Vidyasagar TR, Creutzfeldt OD (1991) Whole cell recording and conductance measurements in cat visual cortex in-vivo. NeuroReport 2:485–488

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Mittermaier FX, Planert H, Schneider UC, Alle H, Geiger JRP (2019) High-throughput microcircuit analysis of individual human brains through next-generation multineuron patch-clamp. Elife, 8

    Google Scholar 

  • Pinault D (1996) A novel single-cell staining procedure performed in vivo under electrophysiological control: Morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or neurobiotin. J Neurosci Methods 65:113–136

    Article  CAS  PubMed  Google Scholar 

  • Rhee JS, Ebihara S, Akaike N (1994) Gramicidin perforated patch-clamp technique reveals glycine-gated outward chloride current in dissociated nucleus solitarii neurons of the rat. J Neurophysiol 72:1103–1108

    Article  CAS  PubMed  Google Scholar 

  • Stuart GJ, Dodt HU, Sakmann B (1993) Patch-clamp recordings from the soma and dendrites of neurons in brain slices using infrared video microscopy. Pflugers Arch 423:511–518

    Article  CAS  PubMed  Google Scholar 

  • Suk H-J, Boyden ES, van Welie I (2019) Advances in the automation of whole-cell patch clamp technology. J Neurosci Methods 326:108357-S0165027019302146 108357 https://doi.org/10.1016/j.jneumeth.2019.108357

  • Tang JM, Wang J, Quandt FN, Eisenberg RS (1990) Perfusing pipettes. Pflugers Arch 416:347–350

    Article  CAS  PubMed  Google Scholar 

  • Vandael D, Okamoto Y, Borges-Merjane C, Vargas-Barroso V, Suter BA, Jonas P (2021) Subcellular patch-clamp techniques for single-bouton stimulation and simultaneous pre- and postsynaptic recording at cortical synapses. Nat Protoc 16:2947–2967

    Article  CAS  PubMed  Google Scholar 

  • Wilders R (2006) Dynamic clamp: A powerful tool in cardiac electrophysiology. J Physiol 576:349–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu WJ, Vicini S (1997) Neurosteroid prolongs gabaa channel deactivation by altering kinetics of desensitized states. J Neurosci 17:4022–4031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian C. Roth .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roth, F.C., Numberger, M., Draguhn, A. (2023). Spezielle Anwendungen. In: Patch-Clamp-Technik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-66053-9_6

Download citation

Publish with us

Policies and ethics

Navigation