The Very Early Universe

  • Chapter
  • First Online:
Galaxy Formation

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 914 Accesses

Summary

The remarkable result of contemporary astrophysical cosmology has been the development of the concordance ΛCDM model which can account for the very extensive data from many different wavebands. The values of the parameters which come out of these studies are, however, very perplexing and result in a number major problems. These include: the horizon problem, the flatness problem, the baryon-asymmetry problem, the primordial fluctuation problem and the values of the cosmological parameters. Various solutions to these problems are described including the anthropic cosmological principle and the inflationary paradigm for the very early Universe. The origin of the primordial fluctuation spectrum of perturbations within the context of the inflationary paradigm is described in simple physical terms by analogy with the quantum harmonic oscillator. Baryogenesis and the Planck era complete the discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Albrecht, A., & Steinhardt, P. (1982). Cosmology for grand unified theories with radiatively induced symmetry breaking. Physical Review Letters, 48, 1220–1223.

    Article  ADS  Google Scholar 

  • Barrow, J., & Tipler, F. (1986). The anthopic cosmological principle. Oxford: Oxford University Press.

    Google Scholar 

  • Baumann, D. (2022). Cosmology. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Bertschinger, E. (1996). Cosmological dynamics. In R. Schaeffer, J. Silk, M. Spiro, & J. Zinn-Justin (Eds.), Cosmology and Large Scale Structure: Proceedings of the “Les Houches Ecole d’Ete de Physique Theorique” (pp. 273). Amsterdam: Elsevier.

    Google Scholar 

  • Bludman, S., & Ruderman, M. (1977). Induced cosmological constant expected above the phase transition restoring the broken symmetry. Physical Review Letters, 38, 255–257.

    Article  ADS  Google Scholar 

  • Carroll, S. M., Press, W. H., & Turner, E. L. (1992). The cosmological constant. Annual Review of Astronomy and Astrophysics, 30, 499–542.

    Article  ADS  Google Scholar 

  • Carter, B. (1974). Large number coincidences and the anthropic principle in cosmology. In M. Longair (Ed.), Confrontation of Cosmological Theories with Observational Data, IAU Symposium (Vol. 63, pp. 291–298). Dordrecht: D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • CMS Collaboration. (2012). Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Physics Letters B, 716(1), 30–61. https://doi.org/10.1016/j.physletb.2012.08.021

    Article  ADS  Google Scholar 

  • Dicke, R. (1961). Dirac’s cosmology and Mach’s principle. Nature, 192, 440–441.

    Article  ADS  MATH  Google Scholar 

  • Dicke, R., & Peebles, P. (1979). Big Bang cosmology – Enigmas and nostrums. In S. Hawking & W. Israel (Eds.), General relativity: An Einstein centenary survey (pp. 504–517). Cambridge: Cambridge University Press.

    Google Scholar 

  • Dodelson, S. (2003). Modern cosmology. Amsterdam: Academic Press. Second edition with F. Schmidt, 2020.

    Google Scholar 

  • Gibbons, G., Shellard, E., & Rankin, S. (2003). The future of theoretical physics and cosmology. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Gribben, J., & Rees, M. (1989). Dark matter, mankind and anthropic cosmology. New York: Bantam Books.

    Google Scholar 

  • Guth, A. (1981). Inflationary Universe: A possible solution to the horizon and flatness problems. Physical Review D, 23, 347–356.

    Article  ADS  MATH  Google Scholar 

  • Guth, A. H. (1997). The inflationary Universe. The quest for a new theory of cosmic origins. Reading: Addison-Wesley.

    Book  Google Scholar 

  • Higgs, P. (1964). Broken symmetries, massless particles and gauge fields. Physics Letters, 12, 132–133.

    Article  ADS  Google Scholar 

  • Kibble, T. W. B. (1976). Topology of cosmic domains and strings. Journal of Physics A: Mathematical and General, 9, 1387–1398.

    Article  ADS  MATH  Google Scholar 

  • Kolb, E. W., & Turner, M. S. (1990). The early Universe. Redwood City: Addison–Wesley.

    MATH  Google Scholar 

  • Lanczos, K. (1922). Bemerkung zur de Sitterschen Welt (Remarks on de Sitter’s World Model). Physikalische Zeitschrift, 23, 539–543.

    MATH  Google Scholar 

  • Liddle, A. R., & Lyth, D. (2000). Cosmological inflation and large-scale structure. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Linde, A. (1974). Is the Lee constant a cosmological constant? Journal of Experimental and Theoretical Physics Letters, 19, 183–184.

    ADS  MathSciNet  Google Scholar 

  • Linde, A. (1982). A new inflationary Universe scenario: A possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Physics Letters, 108B, 389–393.

    Article  ADS  Google Scholar 

  • Linde, A. (1983). Chaotic inflation. Physics Letters, 129B, 177–181.

    Article  ADS  Google Scholar 

  • Lineweaver, C. H. (2005). Inflation and the Cosmic Microwave Background. In M. Colless (Ed.), The new cosmology (pp. 31–65).

    Google Scholar 

  • Longair, M. S. (1997). The Friedman Robertson-Walker models: On bias, errors and acts of faith. In N. Turok (Ed.), Critical dialogues in cosmology (pp. 285–308). Singapore: World Scientific.

    Google Scholar 

  • Longair, M. (2013). Quantum concepts in physics. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Lyth, D. H., & Liddle, A. R. (2009). The primordial density perturbation. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • McCrea, W. (1970). A philosophy for big bang cosmology. Nature, 228, 21–24.

    Article  ADS  Google Scholar 

  • Mukhanov, V. (2005). Physical foundations of cosmology. Cambridge: Cambridge University Press.

    Book  MATH  Google Scholar 

  • Peacock, J. (1999). Cosmological physics. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Sakharov, A. (1967). Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe. Pis’ma v Zhurnal Èksperimental’noi i Teoreticheskoi Fiziki, 5, 32–35.

    Google Scholar 

  • Shellard, P. (2003). The future of cosmology: Observational and computational prospects. In G. Gibbons, E. Shellard, & S. Rankin (Eds.), The future of theoretical physics and cosmology (pp. 755–780). Cambridge: Cambridge University Press.

    Google Scholar 

  • Weinberg, S. (1989). The cosmological constant problem. Reviews of Modern Physics, 61, 1–23.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Weinberg, S. (1997). Theories of the cosmological constant. In N. Turok (Ed.), Critical dialogues in cosmology (pp. 195–203). Singapore: World Scientific.

    Google Scholar 

  • Wheeler, J. (1977). Genesis and observership. In R. Butts & J. Hintikka (Eds.), Foundational problems in the special science (pp. 3–33). Dordrecht: D. Reidel Publishing Company.

    Chapter  Google Scholar 

  • Zeldovich, Y. (1965). Survey of modern cosmology. Advances in Astronomy and Astrophysics, 3, 241–379.

    Article  ADS  Google Scholar 

  • Zeldovich, Y. B. (1968). The cosmological constant and the theory of elementary particles. Uspekhi Fizicheskikh Nauk, 95, 209–230. [Translation: (1968) SP-Uspekhi, 11, 381–393.].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longair, M.S. (2023). The Very Early Universe. In: Galaxy Formation. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65891-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65891-8_20

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65890-1

  • Online ISBN: 978-3-662-65891-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation