The Evolution of Galaxies and Active Galaxies with Cosmic Epoch

  • Chapter
  • First Online:
Galaxy Formation

Part of the book series: Astronomy and Astrophysics Library ((AAL))

  • 914 Accesses

Summary

Evolutionary changes in the properties of all classes of extragalactic systems with cosmic epoch have been observed in all accessible astronomical wavebands. The analytic tools necessary to interpret these observations are described and then applied to the observational data. The techniques include source counts, VV max tests, the background radiation and fluctuations in its intensity. Each waveband provides evidence on the cosmic evolution of different components of galaxies, including their stellar populations, star formation rates and the growth of supermassive black holes in active galactic nuclei. These analyses provide the information needed to put together a coherent picture of the evolution of the contents of the Universe as a whole, the subject of Chap. 19.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 69.54
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    I have given a simple derivation of this relation in the context of ionisation losses in a plasma (Longair, 2011).

References

  • Abraham, R. G., Tanvir, N. R., Santiago, B., et al. (1996). Galaxy morphology to I = 25 mag in the Hubble Deep Field. Monthly Notices of the Royal Astronomical Society, 279, L47–L52.

    Article  ADS  Google Scholar 

  • Aragón-Salamanca, A., Ellis, R. S., Couch, W. J., & Carter, D. (1993). Evidence for systematic evolution in the properties of galaxies in distant clusters. Monthly Notices of the Royal Astronomical Society, 262, 764–794.

    Article  ADS  Google Scholar 

  • Beckwith, S. V. W., Stiavelli, M., Koekemoer, A. M., et al. (2006). The Hubble Ultra Deep Field. Astronomical Journal, 132, 1729–1755.

    Article  ADS  Google Scholar 

  • Berta, S., Magnelli, B., Nordon, R., et al. (2011). Herschel/PEP dissects the cosmic infrared background. In W. Wang, J. Lu, Z. Luo, et al. (Eds.), Galaxy evolution: Infrared to millimeter wavelength perspective. Astronomical Society of the Pacific Conference Series (Vol. 446, pp. 309–314).

    Google Scholar 

  • Blain, A. W., & Longair, M. S. (1993). Sub-millimetre cosmology. Monthly Notices of the Royal Astronomical Society, 264, 509–521.

    Article  ADS  Google Scholar 

  • Blain, A. W., & Longair, M. S. (1996). Observing strategies for blank-field surveys in the sub-millimetre waveband. Monthly Notices of the Royal Astronomical Society, 279, 847–858.

    Article  ADS  Google Scholar 

  • Borgani, S., & Guzzo, L. (2001). X-ray clusters of galaxies as tracers of structure in the Universe. Nature, 409, 39–45.

    Article  ADS  Google Scholar 

  • Boyle, B. J., Shanks, T., Croom, S. M., et al. (2000). The 2dF QSO redshift survey – I. The optical luminosity function of quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 317, 1014–1022.

    Article  ADS  Google Scholar 

  • Bracessi, A., Formiggini, L., & Gandolfi, E. (1970). Magnitudes, colours and coordinates of 175 ultraviolet excess objects in the field 13h, +36. Astronomy & Astrophysics, 5, 264–279. Erratum: Astronomy & Astrophysics, 23, 159.

    Google Scholar 

  • Brandt, W. N., & Hasinger, G. (2005). Deep extragalactic X-ray surveys. Annual Review of Astronomy and Astrophysics, 43, 827–859.

    Article  ADS  Google Scholar 

  • Bridle, A. H. (1967). The spectrum of the radio background between 13 and 404 MHz. Monthly Notices of the Royal Astronomical Society, 136, 219–240.

    Article  ADS  Google Scholar 

  • Bruzual, G., & Charlot, S. (2003). Stellar population synthesis at the resolution of 2003. Monthly Notices of the Royal Astronomical Society, 344, 1000–1028.

    Article  ADS  Google Scholar 

  • Butcher, H., & Oemler, A. (1978). The evolution of galaxies in clusters. I – ISIT photometry of C1 0024+1654 and 3C 295. The Astrophysical Journal, 219, 18–30.

    Article  ADS  Google Scholar 

  • Butcher, H., & Oemler, A. (1984). The evolution of galaxies in clusters. V – A study of populations since z ≈ 0.5. The Astrophysical Journal, 285, 426–438.

    Article  ADS  Google Scholar 

  • Cappelluti, N., Hasinger, G., Brusa, M., et al. (2007). The XMM-Newton wide-field survey in the COSMOS field II: X-ray data and the log N–log S. Astrophysics e-prints.

    Google Scholar 

  • Costa, E., Frontera, F., Heise, J., et al. (1997). Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997. Nature, 387, 783–785.

    Article  ADS  Google Scholar 

  • Cowie, L. L., Barger, A. J., & Kneib, J.-P. (2002). Faint submillimeter counts from deep 850 micron observations of the lensing clusters A370, A851, and A2390. Astronomical Journal, 123, 2197–2205.

    Article  ADS  Google Scholar 

  • Davidson, W., & Davies, M. (1964). Interpretation of the counts of radio sources in terms of a 4-parameter family of evolutionary universes. Monthly Notices of the Royal Astronomical Society, 127, 241–255.

    Article  ADS  MATH  Google Scholar 

  • Dickinson, M. (1997). Clusters of galaxies at z ≥ 1. In N. Tanvir, A. Aragón-Salamanca, & J. Wall (Eds.), The Hubble Space Telescope and the high redshift Universe (pp. 207–218). Singapore: World Scientific Publishing Company.

    Google Scholar 

  • Dressler, A., Oemler, A., Couch, W. J., et al. (1997). Evolution since z = 0.5 of the morphology-density relation for clusters of galaxies. The Astrophysical Journal, 490, 577–591.

    Article  ADS  Google Scholar 

  • Dressler, A., & Smail, I. (1997). HST observations of distant clusters: Implications for galaxy evolution. In N. Tanvir, A. Aragón-Salamanca, & J. Wall (Eds.), The Hubble Space Telescope and the high redshift Universe (pp. 185–194). Singapore: World Scientific Publishing Company.

    Google Scholar 

  • Dunlop, J. S. (1998). Cosmic star-formation and radio source evolution. In M. N. Bremer, N. Jackson, & I. Perez-Fournon (Eds.), Astrophysics and Space Science Library (ASSL) Vol. 226: Observational cosmology with the new radio surveys (pp. 157–164). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Dunlop, J. S., & Peacock, J. A. (1990). The redshift cut-off in the luminosity function of radio galaxies and quasars. Monthly Notices of the Royal Astronomical Society, 247, 19–42.

    ADS  Google Scholar 

  • Ellis, R. G. (1997). Faint blue galaxies. Annual Review of Astronomy and Astrophysics, 35, 389–443.

    Article  ADS  Google Scholar 

  • Ellis, R. G., Smail, I., Dressler, A., et al. (1997). The homogeneity of spheroidal populations in distant clusters. The Astrophysical Journal, 483, 582–596.

    Article  ADS  Google Scholar 

  • Ellis, S. C., & Bland-Hawthorn, J. (2006). GalaxyCount: A JAVA calculator of galaxy counts and variances in multiband wide-field surveys to 28 AB mag. Astrophysics e-prints.

    Google Scholar 

  • Fan, X., Hennawi, J. F., Richards, G. T., et al. (2004). A survey of z ≥ 5.7 quasars in the Sloan Digital Sky Survey. III. Discovery of five additional quasars. Astronomical Journal, 128, 515–522.

    Article  ADS  Google Scholar 

  • Fan, X., Narayanan, V. K., Lupton, R. H., et al. (2001). A survey of z ≥ 5.8 quasars in the Sloan Digital Sky Survey. I. Discovery of three new quasars and the spatial density of luminous quasars at z ∼ 6. Astronomical Journal, 122, 2833–2849.

    Article  ADS  Google Scholar 

  • Felten, J. (1977). Study of the luminosity function for field galaxies. Astronomical Journal, 82, 861–878.

    Article  ADS  Google Scholar 

  • Fomalont, E. B., Kellermann, K. I., Anderson, M. C., et al. (1988). New limits to fluctuations in the cosmic background radiation at 4.86 GHz between 12 and 60 arcsecond resolution. The Astrophysical Journal, 96, 1187–1191.

    Google Scholar 

  • Giacconi, R., Gursky, H., Paolini, F. R., & Rossi, B. B. (1962). Evidence for X-rays from sources outside the solar system. Physical Review Letters, 9, 439–443.

    Article  ADS  Google Scholar 

  • Gilli, R., Comastri, A., & Hasinger, G. (2007). The synthesis of the cosmic X-ray background in the Chandra and XMM-Newton era. Astronomy & Astrophysics, 463, 79–96.

    Article  ADS  Google Scholar 

  • Glazebrook, K., Ellis, R. S., Colless, M., et al. (1995). The morphological identification of the rapidly evolving population of faint galaxies. Monthly Notices of the Royal Astronomical Society, 275, L19–L22.

    Article  ADS  Google Scholar 

  • Gunn, J. E. (1978). The Friedmann models and optical observations in cosmology. In A. Maeder, L. Martinet, & G. Tammann (Eds.), Observational cosmology: 8th advanced course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978 (pp. 1–121). Geneva: Geneva Observatory Publications.

    Google Scholar 

  • Gunn, J. E., Hoessel, J. G., Westphal, J. A., et al. (1981). Investigations of the optical fields of 3CR radio sources to faint limiting magnitudes. IV. Monthly Notices of the Royal Astronomical Society, 194, 111–123.

    Article  ADS  Google Scholar 

  • Harrison, E. R. (1987). Darkness at night: A riddle of the Universe. Cambridge: Cambridge University Press.

    Google Scholar 

  • Hasinger, G., Burg, R., Giacconi, R., et al. (1993). A deep X-ray survey in the Lockman hole and the soft X-ray log N–log S. Astronomy & Astrophysics, 275, 1–15.

    ADS  Google Scholar 

  • Hausman, M. A., & Ostriker, J. P. (1977). Cannibalism among galaxies – Dynamically produced evolution of cluster luminosity functions. The Astrophysical Journal, 217, L125–L129.

    Article  ADS  Google Scholar 

  • Hausman, M. A., & Ostriker, J. P. (1978). Galactic cannibalism. III - The morphological evolution of galaxies and clusters. The Astrophysical Journal, 224, 320–336.

    Article  ADS  Google Scholar 

  • Hawkins, M. R. S. (1986). On the nature of objects detected as faint long-term variables. Monthly Notices of the Royal Astronomical Society, 219, 417–426.

    Article  ADS  Google Scholar 

  • Helou, G., Soifer, B. T., & Rowan-Robinson, M. (1985). Thermal infrared and non-thermal radio: Remarkable correlation in disks of galaxies. The Astrophysical Journal, 298, L7–L11.

    Article  ADS  Google Scholar 

  • Hewish, A. (1961). Extrapolation of the number-flux density relation of radio stars by Scheuer’s statistical methods. Monthly Notices of the Royal Astronomical Society, 123, 167–181.

    Article  ADS  Google Scholar 

  • Hook, I. M., McMahon, R. G., Boyle, B. J., & Irwin, M. J. (1991). The variability of a large sample of quasars. In D. Crampton (Ed.), The space distribution of quasars (Vol. 21, pp. 67–75). San Francisco: Astronomical Society of the Pacific Conference Series.

    Google Scholar 

  • Hubble, E. P. (1936). The realm of the nebulae. New Haven: Yale University Press.

    MATH  Google Scholar 

  • Inskip, K. J., Best, P. N., Longair, M. S., & MacKay, D. J. C. (2002). Infrared magnitude-redshift relations for luminous radio galaxies. Monthly Notices of the Royal Astronomical Society, 329, 277–289.

    Article  ADS  Google Scholar 

  • Irwin, M., McMahon, R. G., & Hazard, C. (1991). APM optical surveys for high redshift quasars. In D. Crampton (Ed.), ASP Conference Series 21: The Space Distribution of Quasars (pp. 117–126).

    Google Scholar 

  • Kauffmann, G., & White, S. D. (1993). The merging history of dark matter haloes in a hierarchical Universe. Monthly Notices of the Royal Astronomical Society, 261, 921–928.

    Article  ADS  Google Scholar 

  • Kippenhahn, R., & Weigert, A. (1990). Stellar structure and evolution. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Koo, D. C., & Kron, R. G. (1982). QSO counts - A complete survey of stellar objects to B = 23. Astronomy & Astrophysics, 105(1), 107–119.

    ADS  Google Scholar 

  • Laing, R. A., Riley, J. M., & Longair, M. S. (1983). Bright radio sources at 178 MHz - Flux densities, optical identifications and the cosmological evolution of powerful radio galaxies. Monthly Notices of the Royal Astronomical Society, 204, 151–187.

    Article  ADS  Google Scholar 

  • Longair, M. (1997). Active galactic nuclei – The redshift One 3CR galaxies. Astronomy and Geophysics, 38, 10–15.

    Article  ADS  Google Scholar 

  • Longair, M. S. (1966). On the interpretation of radio source counts. Monthly Notices of the Royal Astronomical Society, 133, 421–436.

    Article  ADS  Google Scholar 

  • Longair, M. S. (1978). Radio astronomy and cosmology. In A. Maeder, L. Martinet, & G. Tammann (Eds.), Observational cosmology: 8th advanced course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978 (pp. 125–257). Geneva: Geneva Observatory Publications.

    Google Scholar 

  • Longair, M. S. (1995). The physics of background radiation. In B. Binggeli & R. Buser (Eds.), The deep Universe (pp. 317–514). The authors were A.R. Sandage, R.G. Kron and M.S. Longair.

    Google Scholar 

  • Longair, M. S. (2006). The cosmic century: A history of astrophysics and cosmology. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Longair, M. S. (2011). High energy astrophysics (3rd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Longair, M. S., & Scheuer, P. A. G. (1970). The luminosity-volume test for quasi-stellar objects. Monthly Notices of the Royal Astronomical Society, 151, 45–63.

    Article  ADS  Google Scholar 

  • Longair, M. S., & Sunyaev, R. A. (1969). Fluctuations in the Microwave Background radiation. Nature, 223, 719–721.

    Article  ADS  Google Scholar 

  • Magnelli, B., Popesso, P., Berta, S., et al. (2013). The deepest Herschel-PACS far-infrared survey: number counts and infrared luminosity functions from combined PEP/GOODS-H observations. Astronomy & Astrophysics, 553. https://doi.org/10.1051/0004-6361/201321371

  • Majewski, S. R., Munn, J. A., Kron, R. G., et al. (1991). A proper motion and variability QSO survey to B = 22.5. In D. Crampton (Ed.), The space distribution of quasars (Vol. 21, pp. 55–65). San Francisco: Astronomical Society of the Pacific Conference Series.

    Google Scholar 

  • Martin, C., & Bowyer, S. (1989). Evidence for an extragalactic component of the far-ultraviolet background and constraints on galaxy evolution for z between 0.1 and 0.6. The Astrophysical Journal, 338, 677–706.

    Article  ADS  Google Scholar 

  • Metcalfe, N., Shanks, T., Campos, A., et al. (1996). Galaxy formation at high redshifts. Nature, 383, 236–237.

    Article  ADS  Google Scholar 

  • Osmer, P. S. (1982). Evidence for a decrease in the space density of quasars at z more than about 3.5. The Astrophysical Journal, 253, 28–37.

    Article  ADS  Google Scholar 

  • Paciesas, W. S., Meegan, C. A., Pendleton, G. N., et al. (1999). The fourth BATSE gamma-ray burst catalog (revised). Astrophysical Journal Supplement, 122, 465–495.

    Article  ADS  Google Scholar 

  • Peacock, J. A. (1985). The high-redshift evolution of radio galaxies and quasars. Monthly Notices of the Royal Astronomical Society, 217, 601–631.

    Article  ADS  Google Scholar 

  • Petrosian, V., & Salpeter, E. E. (1968). Ghost images in inhomogeneous Friedmann universes. The Astrophysical Journal, 151, 411–429.

    Article  ADS  Google Scholar 

  • Richards, G. T., Strauss, M. A., Fan, X., et al. (2006). The Sloan Digital Sky Survey quasar survey: Quasar luminosity function from data release 3. Astronomical Journal, 131, 2766–2787.

    Article  ADS  Google Scholar 

  • Rosati, P., Borgani, S., & Norman, C. (2002). The evolution of X-ray clusters of galaxies. Annual Review of Astronomy and Astrophysics, 40, 539–577.

    Article  ADS  Google Scholar 

  • Rowan-Robinson, M. (1968). The determination of the evolutionary properties of quasars by means of the luminosity-volume test. Monthly Notices of the Royal Astronomical Society, 141, 445–458.

    Article  ADS  Google Scholar 

  • Rowan-Robinson, M., Benn, C. R., Lawrence, A., et al. (1993). The evolution of faint radio sources. Monthly Notices of the Royal Astronomical Society, 263, 123–130.

    Article  ADS  Google Scholar 

  • Sahu, K. C., Livio, M., Petro, L., et al. (1997). The optical counterpart to gamma-ray burst GRB 970228 observed using the Hubble Space Telescope. Nature, 387, 476–478.

    Article  ADS  Google Scholar 

  • Sa**a, A., Scott, D., Dennefeld, M., et al. (2006). The 1-1000μm spectral energy distributions of far-infrared galaxies. Monthly Notices of the Royal Astronomical Society, 369, 939–957.

    Article  ADS  Google Scholar 

  • Sandage, A. R. (1965). The existence of a major new constituent of the Universe: The quasi-stellar galaxies. The Astrophysical Journal, 141, 1560–1578.

    Article  ADS  Google Scholar 

  • Sanders, D. B., & Mirabel, I. F. (1996). Luminous infrared galaxies. Annual Review of Astronomy and Astrophysics, 34, 749–792.

    Article  ADS  Google Scholar 

  • Saunders, W., Rowan-Robinson, M., Lawrence, A., et al. (1990). The 60-micron and far-infrared luminosity functions of IRAS galaxies. Monthly Notices of the Royal Astronomical Society, 242, 318–337.

    Article  ADS  Google Scholar 

  • Scheuer, P. A. G. (1957). A statistical method for analysing observations of faint radio stars. Proceedings of the Cambridge Philosophical Society, 53, 764–773.

    Google Scholar 

  • Scheuer, P. A. G. (1974). Fluctuations in the X-ray background. Monthly Notices of the Royal Astronomical Society, 166, 329–338.

    Article  ADS  Google Scholar 

  • Scheuer, P. A. G. (1990). Radio source counts. In B. Bertotti, R. Balbinot, S. Bergia, & A. Messina (Eds.), Modern cosmology in retrospect (pp. 331–346). Cambridge: Cambridge University Press.

    Google Scholar 

  • Schmidt, M. (1968). Space distribution and luminosity functions of quasi-stellar sources. The Astrophysical Journal, 151, 393–409.

    Article  ADS  Google Scholar 

  • Schmidt, M., & Green, R. F. (1983). Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys. The Astrophysical Journal, 269, 352–374.

    Article  ADS  Google Scholar 

  • Schmidt, M., Schneider, D. P., & Gunn, J. E. (1995). Spectroscopic CCD surveys for quasars at large redshift. IV. Evolution of the luminosity function from quasars detected by their Lyman-alpha emission. Astronomical Journal, 110, 68–77.

    Article  ADS  Google Scholar 

  • Schneider, D., Schmidt, M., & Gunn, J. E. (1991). PC 1247 + 3406 - An optically selected quasar with a redshift of 4.897. Astronomical Journal, 102, 837–840.

    Article  ADS  Google Scholar 

  • Shectman, S. A. (1974). The small scale anisotropy of the cosmic light. The Astrophysical Journal, 188, 233–242.

    Article  ADS  Google Scholar 

  • Smail, I., Ivison, R. J., & Blain, A. W. (1997). A deep sub-millimeter survey of lensing clusters: A new window on galaxy formation and evolution. The Astrophysical Journal Letter, 490, L5–L8.

    Article  ADS  Google Scholar 

  • Sullivan, W. T., III. (1990). The entry of radio astronomy into cosmology: Radio stars and Martin Ryle’s 2C survey. In B. Bertotti, R. Balbinot, S. Bergia, & A. Messina (Eds.), Modern cosmology in retrospect (pp. 309–330). Cambridge: Cambridge University Press.

    Google Scholar 

  • Tayler, R. J. (1994). The stars: Their structure and evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Tinsley, B. M., & Gunn, J. E. (1976). Luminosity functions and the evolution of low-mass population I giants. The Astrophysical Journal, 206, 525–535.

    Article  ADS  Google Scholar 

  • Waddington, I., Dunlop, J. S., Peacock, J. A., & Windhorst, R. A. (2001). The LBDS Hercules sample of mJy radio sources at 1.4 GHz - II. Redshift distribution, radio luminosity function, and the high-redshift cut-off. Monthly Notices of the Royal Astronomical Society, 328, 882–896.

    Article  ADS  Google Scholar 

  • Wall, J. V. (1996). Space distribution of radio source populations. In R. Ekers, C. Fanti, & L. Padrielli (Eds.), Extragalactic Radio Sources, IAU Symposium (vol. 175, pp. 547–552). Dordrecht: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Warren, S. J., Hewett, P. C., Irwin, M. J., et al. (1987). First observation of a quasar with a redshift of 4. Nature, 325, 131–133.

    Article  ADS  Google Scholar 

  • Windhorst, R. A., Dressler, A., & Koo, D. A. (1987). Ultradeep optical identifications and spectroscopy of faint radio sources. In A. Hewitt, G. Burbidge, & L.-Z. Fang (Eds.), Observational cosmology (pp. 573–576). Dordrecht: D. Reidel Publishing.

    Chapter  Google Scholar 

  • Windhorst, R. A., Fomalont, E. B., Kellermann, K. I., et al. (1995). Identification of faint radio sources with optically luminous interacting disk galaxies. Nature, 375, 471–474.

    Article  ADS  Google Scholar 

  • Woltjer, L. (1990). Phenomenology of active galactic nuclei. In T. J. L. Courvoisier & M. Mayor (Eds.), Saas-fee advanced course 20. Active galactic nuclei (pp. 1–55). Berlin: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Longair, M.S. (2023). The Evolution of Galaxies and Active Galaxies with Cosmic Epoch. In: Galaxy Formation. Astronomy and Astrophysics Library. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65891-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65891-8_17

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65890-1

  • Online ISBN: 978-3-662-65891-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation