Development of Automotive Body Parts in Multi-Material Design—Processes and Tools

  • Chapter
  • First Online:
Life Cycle Design & Engineering of Lightweight Multi-Material Automotive Body Parts

Abstract

Besides the various opportunities of multi-material design, such as weight reduction or function integration, additional challenges occur within the design process. On the one hand, the rising complexity of multi-material body parts requires an additional assistance for the designer. On the other hand, it is of great importance to estimate the developed concepts’ properties—environmental properties in particular—at a very early stage of development in order to focus on promising concepts. To solve these challenges, this chapter introduces a procedure for the development of multi-material body parts on different levels of abstraction. It aims at reducing the design task’s complexity already at a very early stage of design. Among all considered properties, the focus is especially on the environmental properties over the entire life cycle. The procedure is applied on two body parts of the SuperLIGHT-CAR in a case study in order to develop multi-material body parts and validate the procedure as well as the additional tools developed within the project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ashby, M. F.; Bréchet, Y.J.M.; Cebon, D.; Salvo, L. (2004): Selection strategies for materials and processes. In: Materials & Design 25 (1), S. 51–67. DOI: https://doi.org/10.1016/s0261-3069(03)00159-6.

  • Ashby, Michael F. (2005): Materials Selection in Mechanical Design. 3. Aufl. s.l.: Elsevier professional. Online verfügbar unter http://gbv.eblib.com/patron/FullRecord.aspx?p=288921.

  • Athawale, Vijay Manikrao; Kumar, Rajanikar; Chakraborty, Shankar (2011): Decision making for material selection using the UTA method. In: Int J Adv Manuf Technol 57 (1–4), S. 11–22. DOI: https://doi.org/10.1007/s00170-011-3293-7.

  • Babanli, M. B.; Prima, F.; Vermaut, P.; Demchenko, L. D.; Titenko, A. N.; Huseynov, S. S. et al. (2019): Material Selection Methods: A Review. In: Rafik A. Aliev, Janusz Kacprzyk, Witold Pedrycz, Mo Jamshidi und Fahreddin M. Sadikoglu (Hg.): 13th International Conference on Theory and Application of Fuzzy Systems and Soft Computing—ICAFS-2018, Bd. 896. Cham: Springer International Publishing (Advances in Intelligent Systems and Computing), S. 929–936.

    Google Scholar 

  • Bader, Benjamin; Türck, Eiko; Vietor, Thomas (2019): MULTI MATERIAL DESIGN. A CURRENT OVERVIEW OF THE USED POTENTIAL IN AUTOMOTIVE INDUSTRIES. In: Klaus Dröder und Thomas Vietor (Hg.): Technologies for economical and functional lightweight design. Conference proceedings 2018. Berlin: Springer Vieweg (Zukunftstechnologien für den multifunktionalen Leichtbau), S. 3–13.

    Google Scholar 

  • Dröder, Klaus (Hg.) (2020): Prozesstechnologie zur Herstellung von FVK-Metall-Hybriden. Ergebnisse aus dem BMBF-Verbundprojekt ProVorPlus. 1. Auflage 2020. Berlin: Springer Berlin; Springer Vieweg (Zukunftstechnologien für den multifunktionalen Leichtbau).

    Google Scholar 

  • Duflou, J. R.; Moor, J. de; Verpoest, I.; Dewulf, W. (2009): Environmental impact analysis of composite use in car manufacturing. In: CIRP Annals 58 (1), S. 9–12. DOI: https://doi.org/10.1016/j.cirp.2009.03.077.

  • Fröhlich, Tim; Klaiber, Dominik; Türck, Eiko; Vietor, Thomas (2019): Function in a box: An approach for multi-functional design by function integration and separation. In: Procedia CIRP 84, S. 611–617. DOI: https://doi.org/10.1016/j.procir.2019.04.343.

    Article  Google Scholar 

  • Fröhlich, Tim; Kleemann, Sebastian; Türck, Eiko; Vietor, Thomas (2017): Multi-criteria analysis of multi-material lightweight components on a conceptual level of detail. DOI: https://doi.org/10.24355/DBBS.084-201709070942.

  • Giaccobi, S.; Kromm, F. X.; Wargnier, H.; Danis, M. (2010): Filtration in materials selection and multi-materials design. In: Materials & Design 31 (4), S. 1842–1847. DOI: https://doi.org/10.1016/j.matdes.2009.11.005.

  • Goede, Martin; Stehlin, Marc; Rafflenbeul, Lukas; Kopp, Gundolf; Beeh, Elmar (2009): Super Light Car—lightweight construction thanks to a multi-material design and function integration. In: Eur. Transp. Res. Rev. 1 (1), S. 5–10. DOI: https://doi.org/10.1007/s12544-008-0001-2.

  • Götz, Peter; Reg, Yvonne; Hühn, Dominic; Roth, Stephan; Masseria, Frederic; Bublitz, Dennis (2018): Qualitätsgesicherte Prozesskettenverknüpfung zur Herstellung höchstbelastbarer intrinsischer Metall-FKV-Verbunde in 3D-Hybrid-Bauweise – Q-Pro. Unter Mitarbeit von TIB-Technische Informationsbibliothek Universitätsbibliothek Hannover und Technische Informationsbibliothek (TIB).

    Google Scholar 

  • Jahan, A.; Ismail, M. Y.; Sapuan, S. M.; Mustapha, F. (2010): Material screening and choosing methods – A review. In: Materials & Design 31 (2), S. 696–705. DOI: https://doi.org/10.1016/j.matdes.2009.08.013.

  • Kaluza, Alexander; Kleemann, Sebastian; Broch, Florian; Herrmann, Christoph; Vietor, Thomas (2016): Analyzing Decision-making in Automotive Design towards Life Cycle Engineering for Hybrid Lightweight Components. In: Procedia CIRP 50, S. 825–830. DOI: https://doi.org/10.1016/j.procir.2016.05.029.

    Article  Google Scholar 

  • Kellner, Philipp (2014): Zur systematischen Bewertung integrativer Leichtbau-Strukturkonzepte für biegebelastete Crashträger. 1st ed. Göttingen: Cuvillier Verlag. Online verfügbar unter https://ebookcentral.proquest.com/lib/gbv/detail.action?docID=5018942.

  • Klaiber, Dominik; Fröhlich, Tim; Vietor, Thomas (2019): Strategies for function integration in engineering design: from differential design to function adoption. In: Procedia CIRP 84, S. 599–604. DOI: https://doi.org/10.1016/j.procir.2019.04.344.

    Article  Google Scholar 

  • Kleemann, Sebastian; Fröhlich, Tim; Türck, Eiko; Vietor, Thomas (2017): A Methodological Approach Towards Multi-material Design of Automotive Components. In: Procedia CIRP 60, S. 68–73. DOI: https://doi.org/10.1016/j.procir.2017.01.010.

    Article  Google Scholar 

  • Klein, Bernd (2013): Leichtbau-Konstruktion. Wiesbaden: Springer Fachmedien Wiesbaden.

    Book  Google Scholar 

  • Köhler, Christian; Conrad, Jan; Wanke, Sören; Weber, Christian (2008): A matrix representation of the CPM/PDD approach as a means for change impact analysis. In: Design 2008: proceedings of the 10th International Design Conference, Dubrovnik, Croatia, May 19–22, 2008 / Ed.: Dorian Marjanovic. – Zabreb: Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, 2008. DOI: https://doi.org/10.22028/D291-22502.

  • Kuhn, Christoph; Klaiber, Dominik; Altach, Johannes (2019): Lightweight Design in the Vehicle Structure with the Example of a Center Tunnel for the Porsche Boxster. In: Kunststoffe international 2019 (04). Online verfügbar unter https://www.kunststoffe.de/en/journal/archive/article/lightweight-design-in-the-vehicle-structure-with-the-example-of-a-center-tunnel-for-the-porsche-boxster-7979083.html.

  • Sakundarini, Novita; Taha, Zahari; Abdul-Rashid, Salwa Hanim; Ghazila, Raja Ariffin Raja (2013): Optimal multi-material selection for lightweight design of automotive body assembly incorporating recyclability. In: Materials & Design 50, S. 846–857. DOI: https://doi.org/10.1016/j.matdes.2013.03.085

  • Song, Young S.; Youn, Jae R.; Gutowski, Timothy G. (2009): Life cycle energy analysis of fiber-reinforced composites. In: Composites Part A: Applied Science and Manufacturing 40 (8), S. 1257–1265. DOI: https://doi.org/10.1016/j.compositesa.2009.05.020.

  • Wanner, Alexander (2010): Minimum-weight materials selection for limited available space. In: Materials & Design 31 (6), S. 2834–2839. DOI: https://doi.org/10.1016/j.matdes.2009.12.052.

  • Weber, Chr (2007): Looking at “DFX” and “Product Maturity” from the Perspective of a New Approach to Modelling Product and Product Development Processes. In: Frank-Lothar Krause (Hg.): The Future of Product Development. Berlin, Heidelberg: Springer Berlin Heidelberg, S. 85–104.

    Google Scholar 

  • Weber, Julian (2009): Automotive Development Processes. Berlin, Heidelberg: Springer Berlin Heidelberg.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Fröhlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fröhlich, T. et al. (2023). Development of Automotive Body Parts in Multi-Material Design—Processes and Tools. In: Vietor, T. (eds) Life Cycle Design & Engineering of Lightweight Multi-Material Automotive Body Parts. Zukunftstechnologien für den multifunktionalen Leichtbau. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65273-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65273-2_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65272-5

  • Online ISBN: 978-3-662-65273-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation