• 358 Accesses

Zusammenfassung

Was die Anwendung am Menschen betrifft, so sind die besprochenen Möglichkeiten der Aufwärmung und Wiederherstellung einschließlich der Nanotechnologie noch Futurologie. Mögliche Vorgehensweisen werden hier dargestellt. Bei einigen winzigen Lebewesen funktioniert die Wiederbelebung aber, wie wir oben gesehen haben. Im Tierversuch und bei Kryokonservierung von kleinen Organen gibt es erfolgreiche Schritte auch im Labor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Best BP (2013) Effects of temperature on preservation and restoration of cryonics patients. Cryonics Magazine (Institute Evidence-based Cryonics)

    Google Scholar 

  • Carmichael ST (2006) Cellular and molecular mechanisms of neural repair after stroke: making waves. Ann Neurol 59:735–742

    Article  CAS  Google Scholar 

  • Dancause N et al (2005) Extensive cortical rewiring after brain injury. J Neurosci 25:10167–10179

    Article  CAS  Google Scholar 

  • Drexler KE (1981) Molecular engineering. An approach in the development of general capabilities for molecular manipulation. Proc Natl Acad Sci USA 78:5275–5278

    Article  CAS  Google Scholar 

  • Drexler KE (1992) Nanosystems: molecular machinery, manufacturing, and computation. John Wiley & Sons Inc, New York

    Google Scholar 

  • Drexler KE, Peterson C (1994) Experiment Zukunft. Addison-Wesley, Bonn

    Google Scholar 

  • Fennimore AM et al (2003) Rotational actuators based on carbon nanotubes. Nature 424:408–410

    Article  CAS  Google Scholar 

  • Freitas Jr RA (2022) Cryostasis revival – the recovery of cryonics patients through nanomedicine. Alcor Life Extension Foundation, Scottsdale Arizona

    Google Scholar 

  • Gertz HJ (1989) Neuronale Plastizität bei degenerativen Hirnerkrankungen. In: Baltes M et al (Hrsg) Erfolgreiches Altern Bedingungen und Variationen. Huber, Bern, S 250–253

    Google Scholar 

  • Ideguchi M (2010) Murine embryonic stem cell-derived pyramidal neurons integrate into the cerebral cortex and appropriately project axons to subcortical targets. J. Neuroscience 30:894–904

    Article  CAS  Google Scholar 

  • Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  Google Scholar 

  • Leunissen RL, Piatnek-Leunissen DA (1968) A device facilitating in situ freezing of rat heart with modified Wollenberger tongs. J Appl Physiol 25:769–771

    Article  CAS  Google Scholar 

  • Mathwig K (2018) Molecular repair at physiological conditions? In: Sames KH (Hrsg) Applied Cryobiology Human Biostasis, Bd 2. Ibidem, Stuttgart, S 105–115

    Google Scholar 

  • Mathwig K, Sames K (2013) Kryonik. In: Sun MJ, Kabus A (Hrsg) Reader zum Transhumanismus. Books on Demand Norderstedt, Berlin, S 113–129

    Google Scholar 

  • McIntyre RL, Fahy GM (2018) Aldehyde stabilized cryopreservation (Reprint). In: Sames KH (Hrsg) Applied Human Cryobiology, Bd 2. Ibidem, Stuttgart, S 13–46

    Google Scholar 

  • Merkle RC (1992) The technical feasibility of cryonics. Med Hypotheses 39:6–16

    Article  CAS  Google Scholar 

  • Merkle RC (1994a) The molecular repair of the brain. Cryonics (Alcor) 15:18–30

    Google Scholar 

  • Merkle RC (1994b) The molecular repair of the brain. Cryonics (Alcor) 15:16–31

    Google Scholar 

  • Merkle RC, Freitas RA (2008) A cryopreservation revival scenario using molecular nanotechnology. Cryonics 4. Quarter, Alcor

    Google Scholar 

  • Merkle FT et al (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Nat Acad Sci USA 10:17528–17532l

    Article  Google Scholar 

  • Mezey E et al (2003) Transplanted bone marrow generates new neurons in human brains. Proc Natl Acad Sci 100:1364–1369

    Article  CAS  Google Scholar 

  • Mikula S (2016) Progress towards mammalian whole-brain cellular connectomics. Front Neuroanat 10:62. https://doi.org/10.3389/fnana.2016.00062.eCollection2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikula S et al (2015) High-resolution whlo-brain staining for electron microscopic circuit reconstruction. Nat Methods 12:541–546

    Article  CAS  Google Scholar 

  • Nudo RJ (2007) Postinfarct cortical plasticity and behavioralr recovery. Stroke 38:840–845

    Article  Google Scholar 

  • Sames K (2000a) Sterblich durch ein Gesetz der Natur? Frieling, Berlin

    Google Scholar 

  • Sames K (Hrsg) (2000b) Medizinische Regeneration und Tissue Engineering. Ecomed, Landsberg

    Google Scholar 

  • Sames KH (2013a) Organ differentiation and mortality. In: Sames KH (Hrsg) Applied Human Cryobiology, Bd 1. Ibidem, Stuttgart, S 125–144

    Google Scholar 

  • Sames KH (2013b) General mechanisms of mortality and aging and their relation to cryonics In: Sames KH (Hrsg) Applied Cryobiology, Bd 1. Ibidem, Stuttgart, S 145–169

    Google Scholar 

  • Vita-More N et al (2015) Persistence of long-term memory in vitrified and revived Caenorhabditis elegans. Rejuvenation Res 18:458–463

    Article  CAS  Google Scholar 

  • Wu L et al (2008) Neural stem cells improve neuronal survival in cultured postmortem brain tissue from aged and Alzheimer patients. J Cell Mol Med 12:1611–1621

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Hermann Sames .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Der/die Autor(en), exklusiv lizenziert an Springer-Verlag GmbH, DE, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sames, K.H. (2022). Wiederherstellung. In: Kryokonservierung - Zukünftige Perspektiven von Organtransplantation bis Kryonik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65144-5_15

Download citation

Publish with us

Policies and ethics

Navigation