Layered Double Hydroxide-Amplified Chemiluminescence

  • Chapter
  • First Online:
Ultra-Weak Chemiluminescence
  • 268 Accesses

Abstract

Layered double hydroxide (LDH) materials are a kind of typical two-dimensional products, which have attracted substantial interest from academia and industry. LDHs provide a clear layered structure with high porosity, large surface area, and high interlayer anion mobility and layer charge density. In this chapter, we discuss the enhancement effect of interlayer anions or surface in LDHs on various chemiluminescence (CL) systems, including luminol-H2O2 system, singlet oxygen system, fenton-like system, peroxynitrous acid/peroxynitrite (ONOOH/ONOO) system and CL resonance energy transfer (CRET) system. Simultaneously, we summarize the recent advancements and applications of different kinds of LDHs in the CL analysis. The study may offer a novel strategy for more researchers to utilize LDHs for more extensive application in CL field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lee S, Bai L, Hu X (2020) Deciphering iron-dependent activity in oxygen evolution catalyzed by nickel-iron layered double hydroxide. Angew Chem Int Ed 59:8072–8077

    Article  CAS  Google Scholar 

  2. Dionigi F, Zeng Z, Sinev I, Merzdorf T, Deshpande S, Lopez MB, Kunze S, Zegkinoglou I, Sarodnik H, Fan D, Bergmann A, Drnec J, Araujo JF, Gliech M, Teschner D, Zhu J, Li WX, Greeley J, Cuenya BR, Strasser P (2020) In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat Commun 11:2522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yu L, Wu L, McElhenny B, Song S, Luo D, Zhang F, Yu Y, Chen S, Ren Z (2020) Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ Sci 13:3439–3446

    Article  CAS  Google Scholar 

  4. Goh KH, Lim TT, Dong ZL (2008) Application of layered double hydroxides for removal of oxyanions: a review. Water Res 42:1343–1368

    Article  CAS  PubMed  Google Scholar 

  5. Tran HN, Nguyen DT, Le GT, Tomul F, Lima EC, Woo SH, Sarmah AK, Nguyen HQ, Nguyen PT, Nguyen DD, Nguyen TV, Vigneswaran S, Vo DN, Chao HP (2019) Adsorption mechanism of hexavalent chromium onto layered double hydroxides-based adsorbents: a systematic in-depth review. J Hazard Mater 373:258–270

    Article  CAS  PubMed  Google Scholar 

  6. Laipan M, Yu J, Zhu R, Zhu J, Smith AT, He H, O’Hare D, Sun L (2020) Functionalized layered double hydroxides for innovative applications. Mater Horiz 7:715–745

    Article  CAS  Google Scholar 

  7. Wen Y, Wei Z, Liu J, Li R, Wang P, Zhou B, Zhang X, Li J, Li Z (2021) Synergistic cerium do** and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution. J Energy Chem 52:412–420

    Article  Google Scholar 

  8. **e ZH, Zhou HY, He CS, Pan ZC, Yao G, Lai B (2021) Synthesis, application and catalytic performance of layered double hydroxide based catalysts in advanced oxidation processes for wastewater decontamination: a review. Chem Eng J 414:128713.

    Google Scholar 

  9. Khayyami A, Karppinen M (2018) Reversible photoswitching function in atomic/molecular-layer-deposited ZnO: azobenzene superlattice thin films. Chem Mater 30:5904–5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao R, Yan D (2019) Recent development of Ni/Fe-based micro/nanostructures toward photo/electrochemical water oxidation. Adv Energy Mater 10:1900954

    Article  Google Scholar 

  11. Abdelkareem MA, Sayed ET, Mohamed HO, Obaid M, Rezk H, Chae KJ (2020) Nonprecious anodic catalysts for low-molecular-hydrocarbon fuel cells: theoretical consideration and current progress. Prog Energy Combust Sci 77:100805

    Google Scholar 

  12. Gao X, Zhao Y, Dai K, Wang J, Zhang B, Shen X (2020) NiCoP nanowire@NiCo-layered double hydroxides nanosheet heterostructure for flexible asymmetric supercapacitors. Chem Eng J 384:123373

    Google Scholar 

  13. Dong W, Lu Y, Wang W, Zhang M, **g Y, Wang A (2020) A sustainable approach to fabricate new 1D and 2D nanomaterials from natural abundant palygorskite clay for antibacterial and adsorption. Chem Eng J 382:122984

    Google Scholar 

  14. Zhang LX, Hu J, Jia YB, Liu RT, Cai T, Xu ZP (2021) Two-dimensional layered double hydroxide nanoadjuvant: recent progress and future direction. Nanoscale 13:7533–7549

    Article  CAS  PubMed  Google Scholar 

  15. Chen J, Wu L, Ding X, Liu Q, Dai X, Song J, Jiang B, Atrens A, Pan F (2021) Effects of deformation processes on morphology, microstructure and corrosion resistance of LDHs films on magnesium alloy AZ31. J Mater Sci Technol 64:10–20

    Article  Google Scholar 

  16. Feng C, Faheem MB, Fu J, **ao Y, Li C, Li Y (2020) Fe-based electrocatalysts for oxygen evolution reaction: progress and perspectives. ACS Catal 10:4019–4047

    Article  CAS  Google Scholar 

  17. Fan H, Peng M, Strauss I, Mundstock A, Meng H, Caro J (2020) High-flux vertically aligned 2D covalent organic framework membrane with enhanced hydrogen separation. J Am Chem Soc 142:6872–6877

    Article  CAS  PubMed  Google Scholar 

  18. Irkham RRR, Ivandini TA, Fiorani A, Einaga Y (2021) Electrogenerated chemiluminescence of luminol mediated by carbonate electrochemical oxidation at a boron-doped diamond. Anal Chem 93:2336–2341

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Ouyang H, Zhang D, Fu Z (2021) Novel cobalt-based metal-organic frameworks with superior catalytic performance on N-(4-aminobutyl)-N- ethylisoluminol chemiluminescent reaction. Anal Chim Acta 1148:238174

    Google Scholar 

  20. Roda A, Cavalera S, Di Nardo F, Calabria D, Rosati S, Simoni P, Colitti B, Baggiani C, Roda M, Anfossi L (2021) Dual lateral flow optical/chemiluminescence immunosensors for the rapid detection of salivary and serum IgA in patients with COVID-19 disease. Biosens Bioelectron 172:112765

    Google Scholar 

  21. Lin J-M, Yamada M (1999) Oxidation reaction between periodate and polyhydroxyl compounds and its application to chemiluminescence. Anal Chem 71:1760–1766

    Article  CAS  PubMed  Google Scholar 

  22. **ao CB, Palmer DA, Wesolowski DJ, Lovitz SB, King DW (2002) Carbon dioxide effects on luminol and 1,10-phenanthroline chemiluminescence. Anal Chem 74:2210–2216

    Article  CAS  PubMed  Google Scholar 

  23. Feng N, Lu JR, He YH, Du J (2005) Post-chemiluminescence behaviour of Ni2+, Mg2+, Cd2+and Zn2+ in the potassium ferricyanide–luminol reaction. Luminescence 20:266–270

    Article  CAS  PubMed  Google Scholar 

  24. Lin J-M, Liu M (2008) Chemiluminescence from the decomposition of peroxymonocarbonate catalyzed by gold nanoparticles. J Phys Chem B 112(26):7850–7855

    Article  CAS  PubMed  Google Scholar 

  25. **ao CB, King DW, Palmer DA, Wesolowski DJ (2000) Study of enhancement effects in the chemiluminescence method for Cr(III) in the ng·L-1 range. Anal Chim Acta 415:209–219

    Google Scholar 

  26. Wang ZH, Liu F, Lu C (2011) Mg-Al-carbonate layered double hydroxides as a novel catalyst of luminol chemiluminescence. Chem Commun 47(19):5479–5481

    Article  CAS  Google Scholar 

  27. Wang ZH, Liu F, Teng X, Zhao C, Lu C (2011) Detection of hydrogen peroxide in rainwater based on Mg-Al-carbonate layered double hydroxides-catalyzed luminol chemiluminescence. Analyst 136:4986–4990

    Article  CAS  PubMed  Google Scholar 

  28. Kim D, **e C, Becknell N, Yu Y, Karamad M, Chan K, Crumlin EJ, Norskov JK, Yang P (2017) Electrochemical activation of CO2 through atomic ordering transformations of AuCu nanoparticles. J Am Chem Soc 139:8329–8336

    Article  CAS  PubMed  Google Scholar 

  29. Liu Z, Fu G, Li J, Liu Z, Xu L, Sun D, Tang Y (2018) Facile synthesis based on novel carbon-supported cyanogel of structurally ordered Pd3Fe/C as electrocatalyst for formic acid oxidation. Nano Res 11:4686–4696

    Article  CAS  Google Scholar 

  30. Chattot R, Le Bacq O, Beermann V, Kuhl S, Herranz J, Henning S, Kuhn L, Asset T, Guetaz L, Renou G, Drnec J, Bordet P, Pasturel A, Eychmuller A, Schmidt TJ, Strasser P, Dubau L, Maillard F (2018) Surface distortion as a unifying concept and descriptor in oxygen reduction reaction electrocatalysis. Nat Mater 17:827–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cheng W, Teng X, Lu C (2020) Structurally ordered catalyst-amplified chemiluminescence signals. Anal Chem 92:5456–5463

    Article  CAS  PubMed  Google Scholar 

  32. Li BX, Zhang ZJ, ** Y (2001) Plant tissue-based chemiluminescence flow biosensor for glycolic acid. Anal Chem 73:1203–1206

    Article  CAS  PubMed  Google Scholar 

  33. Yu J, Lei G, ** D, Ge S, Liu S (2010) A novel enzyme biosensor for glucose based on rhodanine derivative chemiluminescence system and mesoporous hollow silica microspheres receptor. Biosens Bioelectron 25:2065–2070

    Article  CAS  PubMed  Google Scholar 

  34. Lan D, Li BX, Zhang ZJ (2008) Chemiluminescence flow biosensor for glucose based on gold nanoparticle-enhanced activities of glucose oxidase and horseradish peroxidase. Biosens Bioelectron 24:940–944

    Article  PubMed  Google Scholar 

  35. Li BX, Lan D, Zhang ZJ (2008) Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform. Anal Biochem 374:64–70

    Article  CAS  PubMed  Google Scholar 

  36. Lin J-M, Shan XQ, Hanaoka S, Yamada M (2001) Luminol chemiluminescence in unbuffered solutions with a Cobalt(II)-ethanolamine complex immobilized on resin as catalyst and its application to analysis. Anal Chem 73:5043–5051

    Article  CAS  PubMed  Google Scholar 

  37. Wang ZH, Liu F, Lu C (2012) Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions. Biosens Bioelectron 38:284–288

    Article  CAS  PubMed  Google Scholar 

  38. Pan F, Zhang Y, Yuan Z, Lu C (2018) Sensitive and selective carmine acid detection based on chemiluminescence quenching of layer doubled hydroxide-luminol-H2O2 system. ACS Omega 3:18836–18842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hu D, Yang L, Deng S, Hao Y, Zhang K, Wang X, Liu Y, Liu H, Chen Y, **e M (2021) Development of nanosensor by bioorthogonal reaction for multi-detection of the biomarkers of hepatocellular carcinoma. Sens Actuators B 334:129653

    Google Scholar 

  40. Lin J-M, Yamada M (2003) Microheterogeneous systems of micelles and microemulsions as reaction media in chemiluminescent analysis. Trends Anal Chem 22:99–107

    Article  CAS  Google Scholar 

  41. Pintossi D, Saakes M, Borneman Z, Nijmeijer K (2021) Tailoring the surface chemistry of anion exchange membranes with zwitterions: toward antifouling RED membranes. ACS Appl Mater Interfaces 13:18348–18357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang GF, Chen HY (2000) Studies of micelle and trace non-polar organic solvent on a new chemiluminescence system and its application to flow injection analysis. Anal Chim Acta 409:75–81

    Article  CAS  Google Scholar 

  43. Schrijvers DL, Leroux F, Verney V, Patel MK (2014) Ex-ante life cycle assessment of polymer nanocomposites using organo-modified layered double hydroxides for potential application in agricultural films. Green Chem 16:4969–4984

    Article  CAS  Google Scholar 

  44. Gao Z, Du B, Zhang G, Gao Y, Duan X (2011) Adsorption of pentachlorophenol from aqueous solution on dodecylbenzenesulfonate modified nickel-titanium layered double hydroxide nanocomposites. Ind Eng Chem Res 50:5334–5345

    Article  CAS  Google Scholar 

  45. Liu JX, Chen H, Lin Z, Lin J-M (2010) Preparation of surface imprinting polymer capped Mn-doped ZnS quantum dots and their application for chemiluminescence detection of 4-nitrophenol in tap water. Anal Chem 82:7380–7386

    Article  CAS  PubMed  Google Scholar 

  46. Zhang MC, Han DM, Lu C, Lin J-M (2012) Organo-modified layered double hydroxides switch-on chemiluminescence. J Phys Chem C 116:6371–6375

    Article  CAS  Google Scholar 

  47. Li JG, Li QQ, Lu C, Zhao L, Lin J-M (2011) Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II). Spectrochim Acta A 78:700–705

    Article  Google Scholar 

  48. Guan W, Zhou W, Huang Q, Lu C (2014) Chemiluminescence as a novel indicator for interactions of surfactant–polymer mixtures at the surface of layered double hydroxides. J Phys Chem C 118:2792–2798

    Article  CAS  Google Scholar 

  49. Liu ML, Li BX, Zhang ZJ, Lin J-M (2005) Enhancing effect of DNA on chemiluminescence from the decomposition of hydrogen peroxide catalyzed by copper(II). Anal Bioanal Chem 381:828–832

    Article  CAS  PubMed  Google Scholar 

  50. Kładna A, Aboul-Enein HY, Kruk I (2003) Enhancing effect of melatonin on chemiluminescence accompanying decomposition of hydrogen peroxide in the presence of copper. Free Radic Biol Med 34:1544–1554

    Article  PubMed  Google Scholar 

  51. Soichi H, Lin J-M, Yamada M (2000) Chemiluminescence behavior of the decomposition of hydrogen peroxide catalyzed by copper (II)-amino acid complexes and its application to the determination of tryptophan and phenylalanine. Anal Chim Acta 409:65–73

    Article  Google Scholar 

  52. Zhang LJ, Zhang ZM, Lu C, Lin J-M (2012) Improved chemiluminescence in fenton-like reaction via dodecylbenzene-sulfonate-intercalated layered double hydroxides. J Phys Chem C 116:14711–14716

    Article  CAS  Google Scholar 

  53. McMurray HN, Wilson BP (1999) Mechanistic and spatial study of ultrasonically induced luminol chemiluminescence. J Phys Chem A 103:3955–3962

    Article  CAS  Google Scholar 

  54. Krylova G, Dimitrijevic NM, Talapin DV, Guest JR, Borchert H, Lobo A, Rajh T, Shevchenko EV (2010) Probing the surface of transition-metal nanocrystals by chemiluminescence. J Am Chem Soc 132:9102–9110

    Google Scholar 

  55. Mendez-Diaz J, Sanchez-Polo M, Rivera-Utrilla J, Canonica S, Gunten UV (2010) Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals. Chem Eng J 163:300–306

    Google Scholar 

  56. Xue W, Lin Z, Chen H, Lu C, Lin J-M (2011) Enhancement of ultraweak chemiluminescence from reaction of hydrogen peroxide and bisulfite by water-soluble carbon nanodots. J Phys Chem C 115:21707–21714

    Article  CAS  Google Scholar 

  57. Li RB, Chen H, Li Y, Lu C, Lin J-M (2012) Enhancing effect of alcoholic solvent on hydrosulfite-hydrogen peroxide chemiluminescence system. J Phys Chem A 116:2192–2197

    Article  CAS  PubMed  Google Scholar 

  58. Li RB, Kameda T, Toriba A, Hayakawa K, Lin J-M (2012) Determination of benzo[a]pyrene-7,10-quinone in airborne particulates by using a chemiluminescence reaction of hydrogen peroxide and hydrosulfite. Anal Chem 84:3215–3221

    Article  CAS  PubMed  Google Scholar 

  59. Lu C, Song GQ, Lin J-M (2006) Reactive oxygen species and their chemiluminescence-detection methods. Trac Trend in Anal Chem 25:985–995

    Article  CAS  Google Scholar 

  60. Li JG, Li QQ, Lu C, Zhao L (2011) Determination of nitrite in tap waters based on fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from carbonate and peroxynitrous acid. Analyst 136:2379–2384

    Article  CAS  PubMed  Google Scholar 

  61. Lu C, Qu F, Lin J-M, Yamada M (2002) Flow-injection chemiluminescent determination of nitrite in water based on the formation of peroxynitrite from the reaction of nitrite and hydrogen peroxide. Anal Chim Acta 474:107–114

    Article  CAS  Google Scholar 

  62. Zhang HX, Zhang LJ, Lu C, Zhao L, Zheng Z (2012) CdTe nanocrystals-enhanced chemiluminescence from peroxynitrous acid-carbonate and its application to the direct determination of nitrite. Spectrochim Acta A 85:217–222

    Article  CAS  Google Scholar 

  63. Glebska J, Koppenol WH (2005) Chemiluminescence of pholasin caused by peroxynitrite. Free Radic Biol Med 38:1014–10122

    Article  CAS  PubMed  Google Scholar 

  64. Lu C, Lin J-M, Huie CW (2004) Determination of total bilirubin in human serum by chemiluminescence from the reaction of bilirubin and peroxynitrite. Talanta 63:333–337

    Article  CAS  PubMed  Google Scholar 

  65. Liang YD, Song J-F (2004) Flow-injection chemiluminescence determination of chloroquine using peroxynitrous acid as oxidant. Talanta 62:757–763

    Article  CAS  PubMed  Google Scholar 

  66. Lu C, Lin J-M, Huie CW, Yamada M (2004) Chemiluminescence study of carbonate and peroxynitrous acid and its application to the direct determination of nitrite based on solid surface enhancement. Anal Chim Acta 510:29–34

    Article  CAS  Google Scholar 

  67. Wang ZH, Teng X, Lu C (2012) Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid. Analyst 137:1876–1881

    Article  CAS  PubMed  Google Scholar 

  68. Huang XY, Li L, Qian HF, Dong C, Ren J (2006) A resonance energy transfer between chemiluminescent donors and luminescent quantum-dots as acceptors (CRET). Angew Chem 118:5264–5267

    Article  Google Scholar 

  69. Liu XQ, Freeman R, Golub E, Willner I (2011) Chemiluminescence and chemiluminescence resonance energy transfer (CRET) aptamer sensors using catalytic hemin/g-quadruplexes. ACS Nano 5:7648–7655

    Article  CAS  PubMed  Google Scholar 

  70. Freeman R, Liu XQ, Willner I (2011) Chemiluminescent and chemiluminescence resonance energy transfer (CRET) detection of DNA, metal ions, and aptamer-substrate complexes using hemin/G-quadruplexes and CdSe/ZnS quantum dots. J Am Chem Soc 133:11597–11604

    Article  CAS  PubMed  Google Scholar 

  71. Bi S, Zhang JL, Hao SY, Ding C, Zhang S (2011) Exponential amplification for chemiluminescence resonance energy transfer detection of microrna in real samples based on a cross-catalyst strand-displacement network. Anal Chem 83:3696–3702

    Article  CAS  PubMed  Google Scholar 

  72. Zhao SL, Liu JW, Huang Y, Liu YM (2012) Introducing chemiluminescence resonance energy transfer into immunoassay in a microfluidic format for an improved assay sensitivity. Chem Commun 48:699–701

    Article  CAS  Google Scholar 

  73. Bi S, Zhao TT, Luo BY (2012) A graphene oxide platform for the assay of biomolecules based on chemiluminescence resonance energy transfer. Chem Commun 48:106–108

    Article  CAS  Google Scholar 

  74. Costa AL, Gomes AC, Pillinger M, Goncalves IS, Seixas de Melo JS (2015) Controlling the fluorescence behavior of 1-pyrenesulfonate by cointercalation with a surfactant in a layered double hydroxide. Langmuir 31:4769–4778

    Google Scholar 

  75. Shi WY, He S, Wei M, Evans DG, Xue D (2010) Optical pH sensor with rapid response rased on a fluorescein-intercalated layered double hydroxide. Adv Funct Mater 20:3856–3863

    Article  CAS  Google Scholar 

  76. Wang ZH, Teng X, Lu C (2013) Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix. Anal Chem 85:2436–2442

    Article  CAS  PubMed  Google Scholar 

  77. Poznyak SK, Talapin DV, Shevchenko EV, Weller H (2004) Quantum dot chemiluminescence. Nano Lett 4:693–698

    Article  CAS  Google Scholar 

  78. Chen H, Lin L, Lin Z, Guo G, Lin J-M (2010) Chemiluminescence arising from the decomposition of peroxymonocarbonate and enhanced by CdTe quantum dots. J Phys Chem A 114:10049–10058

    Article  CAS  PubMed  Google Scholar 

  79. Dong S, Liu F, Lu C (2013) Organo-modified hydrotalcite-quantum dot nanocomposites as a novel chemiluminescence resonance energy transfer probe. Anal Chem 85:3363–3368

    Article  CAS  PubMed  Google Scholar 

  80. Wang Z, Teng X, Lu C (2015) Orderly arranged fluorescence dyes as a highly efficient chemiluminescence resonance energy transfer probe for peroxynitrite. Anal Chem 87:3412–3418

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Teng, X., Lu, C. (2022). Layered Double Hydroxide-Amplified Chemiluminescence. In: Lin, JM., Lu, C., Chen, H. (eds) Ultra-Weak Chemiluminescence. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64841-4_10

Download citation

Publish with us

Policies and ethics

Navigation