Zur Auslegung von Verbundisolatoren aus Sicht des Koronaschutzes

  • Chapter
  • First Online:
Silikon-Verbundisolatoren

Zusammenfassung

Im Kap. 4 wird die Vermeidung von Koronaentladungen bei Verbundisolatoren bzw. mit Verbundisolatoren zusammengestellten Ketten behandelt. Bisher gültige Normen für Isolatorenketten mit konventionellen Isolatoren sind insofern anwendbar, als das Auftreten von kontinuierlicher Korona an Kettenkomponenten oder der Isolatorarmatur direkt geprüft werden kann. Speziell ist für hydrophobe Verbundisolatoren das Phänomen der Wassertropfenkorona (aber auch für konventionelle Isolatoren mit einem Coating) zu berücksichtigen, welches von vielen Faktoren abhängt. Das Design des Verbundisolators, d. h. die Materialauswahl, die Stabilität des Dichtungssystems usw. und die auftretende Belastung am Einsatzort können diesbezüglich eine Rolle spielen. Der Grenzwert der Feldstärke auf der Isolierstoffoberfläche von 4,2 kV/cm kann als konservative Empfehlung gelten. Im Vergleich zur 1. Ausgabe wurden der Wissensstand aktualisiert und die Themen Experimentelle Bestimmung von Wassertropfenkorona an Isolatorketten sowie Beispiele für elektrische Feldberechnungen und daraus resultierende Laboraufbauten aufgenommen. Wann immer möglich, wurde auf die aktuelle Normenlage in IEC und auf Publikationen der CIGRE referenziert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. H. Hamanaka: Erkenntnis und Bild – Wissenschaftsgeschichte der Lichtenbergischen Figuren um 1800. Reihe: Stefan Brüdermann und Ulrich Joost (Hrsg.): Lichtenberg-Studien. (Band 16). Wallstein Verlag, Göttingen 2015. ISBN 978–3–8353–1627–0

    Google Scholar 

  2. A. Küchler: Hochspannungstechnik, Grundlagen - Technologie - Anwendungen. Springerverlag, 4. Auflage 2017

    Google Scholar 

  3. A. Krämer: Über das Erosionsverhalten und die Wasseraufnahme von Silikonelastomeren und unterschiedlichen cycloaliphatischen Epoxidharz-Formstoffsystemen. Dissertation, TU Braunschweig 1987

    Google Scholar 

  4. A. Phillips, F. Bologna, T. Shaw: Application of Corona Rings at 115 kV and 138 kV. EPRI-Document 1015917 2008, CIGRE WG B2.21 IWD 063–2009

    Google Scholar 

  5. IEC IS 62073 Ed. 2: 2016: Guidance on the measurement of wettability of insulator surfaces.

    Google Scholar 

  6. IEC IS 61284 Ed 2.0: 1997: Overhead lines - Requirements and tests for fittings. Ed. 3 erscheint 2023

    Google Scholar 

  7. IEEE 539 2020: IEEE Standard Definitions of Terms Relating to Corona and Field Effects of Overhead Power Lines

    Google Scholar 

  8. IEEE 1829: 2017: IEEE Guide for Conducting Corona Tests on Hardware for Overhead Transmission Lines and Substations

    Google Scholar 

  9. IEC IS 60437 Ed 2.0: 1997: Radio interference test on high-voltage insulators. Neue Fassung in 2023 erwartet

    Google Scholar 

  10. BS 137 Part 2: 1973: Specification for Insulators of ceramic material or glass for overhead lines with a nominal voltage greater than 1000 V (inaktiv)

    Google Scholar 

  11. BS EN IEC 60305: 2021: Insulators for overhead lines with a nominal voltage above 1 000 V. Ceramic or glass insulator units for AC systems. Characteristics of insulator units of the cap and pin type

    Google Scholar 

  12. A. J. Phillips, J. Kuffel, A. Baker, J. Burnham, A. Carreira, E. Cherney, W. Chisholm, M. Farzaneh, R. Gemignani, A. Gillespie, T. Grisham, R. Hill, T. Saha, B. Vancia, J. Yu: "Electric Fields on AC Composite Transmission Line Insulators", IEEE Transactions on Power Delivery, Vol. 23, No. 2, April 2008, p.p. 823 -830

    Google Scholar 

  13. J. Hofmann: Elektrische TE- und Ableitstrommessungen mit Impulsspannung an polymeren Isolierstoffoberflächen mit Tropfenbelägen zur Diagnose des Oberflächenzustandes – am Beispiel von Elastomeren. Dissertation TH Zittau, Germany, 1995

    Google Scholar 

  14. A. J. Phillips, D. J. Childs, H. M. Schneider: Aging of Non-Ceramic Insulators due to Corona from Water Drops. IEEE Transactions on Power Delivery, Vol. 14, No. 3, July 1999

    Google Scholar 

  15. Z. X. Cheng, X. D. Liang, Y. X. Zhou, S. W. Wang, Z. C. Guan: Observation of corona and flashover on the surface of composite insulators. 2003 IEEE Bologna PowerTech Conference, June 23-26, Bologna, Italy

    Google Scholar 

  16. S. Keim, D. Koenig, V. Hinrichsen: Experimental investigations on electrohydrodynamic phenomena at single droplets on insulating surfaces. 2003 Annual Report Conference on Electrical Insulation and Dielectric Phenomena

    Google Scholar 

  17. Krivda, D. Birtwhistle: Breakdown between water drops on wet polymer surfaces. 2001 Annual Report Conference on Electrical Insulation and Dielectric Phenomena

    Google Scholar 

  18. G. A. Dawson: Pressure Dependence of Water-Drop Corona Onset and Its Atmospheric Importance. Journal of geophysical Research, Vol. 74, No. 28, 1969

    Google Scholar 

  19. J. Phillips, I. R. Jandrell, J. R. Reynders: Consideration of corona onset from a water drop as a function of air pressure. IEE Proceedings - Science, Measurement and Technology, Volume 143, Issue 2, Mar 1996

    Google Scholar 

  20. V. M. Moreno, R. S. Gorur, A. Kroese: Impact of Corona on the Long-Term Performance of Nonceramic Insulators. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 10, No. 1, February 2003

    Google Scholar 

  21. A. J. Phillips D. J. Childs H. M. Schneider: Water Drop Corona Effects on Full-Scale 500 kV Non-Ceramic Insulators. IEEE Transactions on Power Delivery, Vol. 14, No. 1, January 1999

    Google Scholar 

  22. T. Braunsberger, A. Dziubek, M. Kurrat: Water Drop Corona on Hydrophobic Epoxy. International Conference on Solid Dielectrics, Toulouse, France, July, 2004

    Google Scholar 

  23. Y. Zhu, S. Yamashita, N. Anami, M. Otsubo, C. Honda, Y. Hashimoto: Corona Discharge Phenomenon and Behavior of Water Droplets on the Surface of Polymer in the AC Electric Field. Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials, June 2003 Nagoya P3–31

    Google Scholar 

  24. B. X. Du, Yong Liu: Pattern Analysis of Discharge Characteristics for Hydrophobicity Evaluation of Polymer Insulator. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 18, No. 1; February 2011

    Google Scholar 

  25. H. Deng, Z. He, Jun Ma, Y. Xu, J. Liu, R. Guo: Initiation and Propagation of Discharge in Liquid Droplets: Effect of Droplet Sizes. IEEE Transactions on Plasma Science, Vol. 38, No. 12, December 2010

    Google Scholar 

  26. K. Katada, Y. Takada, M. Takano, T. Nakanishi, Y. Hayashi and R. Matsuoka: Corona Discharge Characteristics of Water Droplets on Hydrophobic Polymer Insulator Surface. Proceedings of the 6th International Conference on Properties and Applications of Dielectric Materials, June 2000, Jiaotong University, **’an, China

    Google Scholar 

  27. A. Hergert, J. Kindersberger, C. Bär, R. Cervinka, R. Bärsch: Hydrophobiebeständigkeit polymerer Isolierwerkstoffe mit dem Dynamischen Tropfen-Prüfverfahren – Vergleich zwischen AC- und DC-Beanspruchungen. RCC Polymertechnik GmbH Fachtagung: 3.– 4. Mai 2012 Berlin

    Google Scholar 

  28. R. Bärsch: Bewertung der Hydrophobie sowie des Kriechstromverhaltens von Silikonelastomeren für Hochspannungs-Freiluftisolatoren. ETG-Fachbericht 93 (2003), S. 97–108

    Google Scholar 

  29. R. Cervinka, R. Bärsch, F. Exl, J. Kindersberger, H.-J. Winter: Untersuchungen zur Beständigkeit der Hydrophobie von polymeren Isolierstoffoberflächen und ihrer Wiederkehr mit dem Dynamischen Tropfen-Prüfverfahren ETG-Tagung 2008

    Google Scholar 

  30. R. Bärsch, R. Cervinka: Oberflächenverhalten von Epoxidharz-Formstoffen unter Hochspannungsbeanspruchung und elektrolytischer Fremdschichtbelastung, Seminar "Epoxidharze in der Elektrotechnik", Technische Akademie Esslingen, 2010

    Google Scholar 

  31. CIGRE WG D1.14: Evaluation of Dynamic Hydrophobicity Properties of Polymeric Materials for Non-Ceramic Outdoor Insulation – Retention and Transfer of Hydrophobicity. Technical Brochure 442, December 2010

    Google Scholar 

  32. J. Kindersberger, R. Bärsch, A. Hergert, C. Bär: Prüfverfahren für die Bewertung wasserabweisender Eigenschaften polymerer Isolierwerkstoffe für Hochspannungsanwendungen; Abschlussbericht zum IGF-Vorhaben Nr. 17001 BG der Forschungsvereinigung Elektrotechnik beim ZVEI e. V. im VDE e. V., Frankfurt/Main, 2015

    Google Scholar 

  33. H. Hillborg, U. W. Gedde: Hydrophobicity Changes in Silicone Rubbers. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 6 No. 5, October 1999

    Google Scholar 

  34. N. Yoshimura, S. Kumagai, S. Nishimura: Electrical and Environmental Ageing of Silicone Rubber used in Outdoor Insulation. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 6 No. 5, October 1999

    Google Scholar 

  35. J. P. Reynders, I. R. Jandrell, S. M. Reynders: Review of Ageing and Recovery of Silicone Rubber Insulation for Outdoor Use. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 6 No. 5, October 1999

    Google Scholar 

  36. R. Hackam: Outdoor HV Composite Polymeric Insulators. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 6 No. 5, October 1999

    Google Scholar 

  37. B. Ma, J. Andersson, S. M. Gubanski: Evaluating Resistance of Polymeric Materials for Outdoor Applications to Corona and Ozone. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 17, No. 2; April 2010

    Google Scholar 

  38. S. Siegel, H. Judeikis: EPR Study of the Biphotonic Nature of the Solute-sensitized Photodecomposition of Polydimethylsiloxane. Journal of chemical Physics, Vol. 43, No. 2, 1965

    Google Scholar 

  39. A. D. Delman, M. Landy, B. B. Simms: Photodecomposition of Polydimethylsiloxane. Journal of polymer Science, Part A-1, Vol. 7, 1969

    Google Scholar 

  40. J. Lacoste, Y. Israeli, J. Lemaire: Photoaging of Substituted and Unsubstituted Silicones. Advances in Chemistry Series 249, American Chemical Society, 1996

    Google Scholar 

  41. V. M. Moreno, R. S. Gorur: Effect of Long-term Corona on Non-ceramic Outdoor Insulator Housing Materials. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 8 No. 1, February 2001

    Google Scholar 

  42. IEC IS 61621 Ed 1.0: 1997: Dry, solid insulating materials – Resistance test to high-voltage, low-current arc discharges

    Google Scholar 

  43. R. Bärsch, H. Jahn, J. Lambrecht, F. Schmuck: Test Methods for Polymeric Insulating Materials for Outdoor HV Insulation. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 6 No. 5, October 1999

    Google Scholar 

  44. M. Goldman, R. S. Sigmond: Corona and Insulation. IEEE Transactions on Electrical Insulation, Vol. EI-17 No. 2, April 1982

    Google Scholar 

  45. M. Goldman, A. Goldman, R. S. Sigmond, T. Sigmond: On the Role of Water in the Aging of Polymers in Air-insulated Electrical Systems. IEEE Transactions on Electrical Insulation, Vol. 26 No. 4, August 1991

    Google Scholar 

  46. M. Goldman, A. Goldman, R. S. Sigmond: Analysis of air corona products by means of their reactions in water. Proceedings 9th International Symposium of Plasma Chemistry, Pugnachinoso, Italy 1989

    Google Scholar 

  47. J. L. Brisset, J. Leievre, A. Doubla, J. Amouroux: Interactions with aqueous solutions of the air corona products. Revue Physical Appliance 25 1990

    Google Scholar 

  48. A. R. Chughtai, D. M. Smith, L. S. Kumosa, M. Kumosa: FTIR Analysis of Non-ceramic Composite Insulators. IEEE Transactions on Dielectrics and Electrical Insulation Vol. 11, No. 4; August 2004

    Google Scholar 

  49. I. Y. AI-Hamoudi: Field Test Results of Composite Silicone Rubber Insulators at Shoaiba of Saudi Arabia. GCC Power 4th CIGRE Conference 2008, Bahrain

    Google Scholar 

  50. D. Kopetjkova, V. Sklenicka: Investigation of HV equipment composite insulators ageing phenomenon. EURODOBLE 2006

    Google Scholar 

  51. Y. Koshino, I. Umeda, M, Ishiwari: Deterioration of silicone rubber for polymer insulators by corona discharge and effect of fillers. Conference on Electrical Insulation and Dielectric Phenomena, 1998. Annual Report

    Google Scholar 

  52. Y. Koshino, I. Nakajima, I. Umeda: Effect on the electrical properties of fillers in silicone rubber for outdoor insulation. Proceedings of 1998 International Symposium on Electrical Insulating Materials, Conference on Dielectrics and Electrical Insulation and the 30th Symposium on Electrical Insulating Materials, Toyohashi, Japan, Sept. 27–30, 1998

    Google Scholar 

  53. S. Ansorge, F. Schmuck, S. Aitken, K. O. Papailiou: Improved performance of silicone rubbers for the use in composite insulators. Paper D1_105_2010, CIGRE 2010

    Google Scholar 

  54. C. Baer, F. Schmuck, J. Strumbelj, E. Tinner, J. Lachman, S. Kornhuber, J. T. Loh: Technical Demands to Improve Today`s Composite Insulator Reliability, CIGRE Session Paris 2020, Paper B2-221, August 2020

    Google Scholar 

  55. C. Baer, F. Schmuck, J. Strumbelj, E. Tinner, J. Lachman, S. Kornhuber, J. T. Loh: Technical Demands to Improve Today`s Composite Insulator Reliability, submitted to CIGRE Centennial 2021, Paper B2-221

    Google Scholar 

  56. R. Bärsch, J. Lambrecht, H. Jahn: On the Evaluation of the Hydrophobicity of Composite Insulator Surfaces. IEEE Annual Report – Conference on Electrical Insulation and Dielectric Phenomena, San Francisco October 1996

    Google Scholar 

  57. Y. Liang; C. R. Li, L. Ding: Study on the Hydrophobicity of HTV SIR Treated by Different Corona Intensity. Power and Energy Engineering Conference, APPEEC 2009. Asia-Pacific

    Google Scholar 

  58. R. Bärsch, J. Pilling, F. Schmuck: Zum Problem der Prüfung von Kunststoffisolatoren. 34. Internationales Wissenschaftliches Kolloquium, TH Ilmenau 1989

    Google Scholar 

  59. R. Bärsch u. a.: Fremdschichtmessungen. Elektropraktiker 38 1984

    Google Scholar 

  60. H. Büchner, A. Zanetti, F. Schmuck: Kunststoffisolatoren als Alternative. SEV Bulletin 7/1997

    Google Scholar 

  61. B. Ma: Effects of Corona and Ozone Exposure on Properties of Polymeric Materials for High Voltage Outdoor Applications, Ph D Thesis, High Voltage Engineering Department of Materials and Manufacturing Technology, Chalmers University of Technology, Göteborg, Sweden 2011

    Google Scholar 

  62. B. Ma, Stanislaw M. Gubanski1, H. Hillborg, J. M. Seifert: Effects of Long Term Corona and Humidity Exposure of Silicone Rubber Based Housing Materials. CIGRE ELECTRA No. 267 – April 2013

    Google Scholar 

  63. IEC IS 60383-2 Ed. 1.0: 1993: Insulators for overhead lines with a nominal voltage above 1000 V – Part 2: Insulator strings and insulator sets for a. c. systems – Definitions, test methods and acceptance criteria

    Google Scholar 

  64. I. Gutman, P. Sidenvall: Optimal Dimensioning of Corona/Grading Rings for Composite Insulators: Calculations & Verification by Testing, World Congress & Exhibition on Insulators, Arresters & Bushings, Munich, Germany, 18-21 October 2015

    Google Scholar 

  65. P. Sidenvall, N. Sundin, I. Gutman, L. Carlshem, R. Kleveborn: Development of test method to verify composite insulators from water induced corona point of view, 32nd Electrical Insulation Conference (EIC), Philadelphia, Pennsylvania, USA, 8 -11 June 2014, Paper S11–3

    Google Scholar 

  66. I. Gutman, A. Dernfalk: Innovative testing techniques for verification of corona, pollution and ice/snow performance of insulation structures, World Congress & Exhibition on Insulators, Arresters & Bushings, Barcelona-Sitges, Spain, 5-8 November 2017

    Google Scholar 

  67. I. Gutman, J. Lundquist, V. Dubickas, L. Carlshem, R. Kleveborn: Design of corona/arcing rings when replacing cap-and-pin insulators by composite insulators, 17th ISH 2011, Hannover, Germany, 22-26 August, 2011, A-007

    Google Scholar 

  68. P. Sidenvall, I. Gutman, L. Carlshem, J. Bartsch, R. Kleveborn: Development of the Water Drop Induced Corona WDIC Test Method for Composite Insulators, IEEE Electrical Insulation Magazine, November/December 2015, Vol. 31, No. 6, p.p. 43-51

    Google Scholar 

  69. P. Sidenvall, I. Gutman, J. Schulte-Fischedick, J. Seifert, J-F. Goffinet: Methodology of Modern E-field Calculations - Case Study for Insulated Cross-Arm, CEIDP-2013, p.p. 334–337

    Google Scholar 

  70. P. Sidenvall, I. Gutman, J.-F. Goffinet: Application of new test procedure for verification of water drop corona on innovative insulation cross-arms, 19th ISH-2015, Pilsen, Czech Republic, 23–28 August, 2015, paper 262

    Google Scholar 

  71. P. Sidenvall, I. Gutman, L. Carlshem, J. Bartsch: A Round Robin Test of the Water Induced Corona Test. ICOLIM-2017, Strasbourg, France, 26–28 April 2017, Paper 0017

    Google Scholar 

  72. CIGRE WG B2.57: Application Guide for Composite Insulators. In preparation for 2023

    Google Scholar 

  73. CIGRE WG 22.03: Use of Stress Control Rings on Composite Insulators. ELECTRA 143 August 1992

    Google Scholar 

  74. Y. Bulent Yildir: Computer-Aided Field Analysis of High Voltage Apparatus Using the Boundary Element Method. Proceeding of the International Coil Winding Conf. Rosemont, Illinois. October 1987

    Google Scholar 

  75. Y. Bulent Yildir: Three-Dimensional Electrostatic Field Analysis on the Microcomputer. ICWA 1989 Coil Winding Proceedings. Rosemont, Illinois. September 1989

    Google Scholar 

  76. A. J. Philips, A. J. Maxwell, C. S. Engelbrecht, I. Gutman: Electric Field Limits for the Design of Grading Rings for Composite Line Insulators. IEEE Transactions on Power Delivery, Vol. 30, No. 3, June 2015, p.p. 1110–1118

    Google Scholar 

  77. T. Braunsberger: Verhalten zyklisch betauter Silikonoberflächen bei elektrischer Beanspruchung; Dissertation, Technische Universität Braunschweig, 2007

    Google Scholar 

  78. CIGRE WG B2.03: Use of Corona Rings to control the electrical Field along Transmission Line Composite Insulators. Technical Brochure 284, December 2005

    Google Scholar 

  79. U. Schümann, F. Barcikowski, M. Schreiber, H. C. Kärner, J. M. Seifert: FEM Calculation and Measurement of the Electrical Field Distribution of HV Composite Insulator Arrangements. CIGRE Session 2002, Paper 33–404

    Google Scholar 

  80. IEC IS 62217 Ed. 2 2012: Polymeric HV insulators for indoor and outdoor use - General definitions, test methods and acceptance criteria. Ed. 3 in 2023 erwartet

    Google Scholar 

  81. H. E. Hoekstra, J. F. van Wolven, A. J. P. van der Wekken: Development of a compact bipole 380 kV overhead line. CIGRE Session 2010, Paper B2_112_2010

    Google Scholar 

  82. K. O. Papailiou, F. Schmuck: Past experience and future trends with compact lines to solve the right of way issues. CIGRE Symposium in Bologna 2011

    Google Scholar 

  83. N. G. Trinh, P. S. Maruvada: A Method of predicting the Corona Performance of Conductor Bundles based on Cage Test Results. IEEE Transactions on Power Apparatus and Systems, Vol. PAS-96, No. 1, January/February 1977

    Google Scholar 

  84. V. L. Chartier, D. E. Blair, R. D. Stearns, D. J. Lamb: Effect of Bundle Orientation on Transmission Line Audible and Radio Noise. IEEE Transactions on Power Delivery, Vol. 9, No. 3, July 1994

    Google Scholar 

  85. IEC TR 60815: 1986: Guide for the selection of insulators in respect of polluted conditions. (ersetzt)

    Google Scholar 

  86. IEC TS 60815–1 Ed. 1: 2008: Selection and dimensioning of high-voltage insulators intended for use in polluted conditions – Part 1: Definitions, information and general principles. Edition 2 in 2024 erwartet.

    Google Scholar 

  87. K. Nixon, J. P. Reynders, R. J. Hill: Corona and sustained Arcing on Conventional and Novel Insulator Designs. South Africans Universities Power Engineering Conference 1998 Stellenbosch, January 1998

    Google Scholar 

  88. D. A. Swift: AC Flashover Mechanism for Water Droplets on a hydrophobic Insulator. 8th ISH, Yokohama, August 1993, Paper 44.09

    Google Scholar 

  89. D. Windmar: Water Drop Initiated Discharges in Air, PhD Thesis, Uppsala University, 1994

    Google Scholar 

  90. Daochun Huang, Jiangjun Ruan, Yong Chen, Feng Huo, Shifeng Yu, Shobao Liu: “Calculation and measurement of Potential and Electric Field Distribution along 1000 kV AC Transmission Line Composite Insulator”, Electrical Machines and Systems Conference, ICEMS-2008, 2008, p.p. 428–433

    Google Scholar 

  91. I. Gutman, J. Lundengård, S. Bucan, P. Sidenvall, J.-F. Goffinet: Trends in pollution/corona testing for compact insulation systems in the form of insulated cross-arms, CIGRE SC D1 Colloquium, Rio de Janeiro, Brazil, 13-18th September 2015, paper 12

    Google Scholar 

  92. S. Ansorge, A. Camendzind, S. E. Pratsinis, M. Ammann, F. Schmuck, K. O. Papailiou: Evaluation of Silicone Rubber Housing Interfaces after Service Exposure and Performance Improvements by Nanofillers enriched Silicone Rubbers. Paper B2–208, CIGRE 2008

    Google Scholar 

  93. D. Craigen: Benchmark Problems for Simulating Electric Fields Near Triple Junctions. 2012 http://www.integratedsoft.com/papers/Benchmark/TripleJunctions.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin O. Papailiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papailiou, K.O., Schmuck, F. (2022). Zur Auslegung von Verbundisolatoren aus Sicht des Koronaschutzes. In: Silikon-Verbundisolatoren. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-64249-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-64249-8_4

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-64248-1

  • Online ISBN: 978-3-662-64249-8

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics

Navigation