Design of a Motorcycle Triple Clamp Optimised for Stiffness and Dam**

  • Conference paper
  • First Online:
Proceedings of the Munich Symposium on Lightweight Design 2020

Abstract

Engineers have always faced the challenge of solving conflicting objectives such as high stiffness combined with high dam**. Structurally optimised components are used, especially by pushing lightweight construction. This design adaptation of component mass and stiffness generally has a negative effect on the dynamic component properties, as both the natural frequencies are shifted and component dam** is reduced. In the majority of applications, the resulting vibrations are undesirable and must be reduced by suitable mechanisms. For example, vibrations in the vehicle can lead to a reduction in driving comfort or to a reduced service life.

One approach to solving conflicting objectives is the targeted integration of effects into components through additive manufacturing. In this paper, the effect-engineering on a laser beam melted motorcycle triple clamp is illustrated. The triple clamp is a highly dynamically loaded structural component where unwanted vibrations occur due to road unevenness, leading to critical hand-arm vibrations. This paper focuses on the simulative design of the triple clamp. The triple clamp is topology-optimised and extended by the effect of particle dam**, so that the component is optimised in terms of stiffness, dam** and mass. The optimisation also makes it possible to achieve a high degree of functional integration by saving 20 components. The effect of particle dam** is experimentally evaluated by preliminary studies, which show that component dam** can be increased by up to a factor of 20. The laser powder bed fusion (LPBF) makes it possible to store unmelted powder in the interior of the component in a targeted manner and thus produce particle-damped structures inside the triple clamp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wiberg, A., Persson, J., Ölvander, J.: Design for additive manufacturing – a review of available design methods and software. Rapid Prototy** Journal 25(6), 1080–1094.

    Google Scholar 

  2. Lachmayer, R., Lippert, R., B.: Entwicklungsmethodik für die Additive Fertigung. Springer Berlin Heidelberg, Berlin Heidelberg (2020).

    Google Scholar 

  3. 3. Kumke, M.: Methodisches Konstruieren von additiv gefertigten Bauteilen. Springer Fachmedien Wiesbaden, Wiesbaden (2018).

    Google Scholar 

  4. 4. Diegel, O., Nordin, A., Motte, D.: A Practical Guide to Design for Additive Manufacturing. Springer Singapore, Singapore (2019).

    Google Scholar 

  5. 5. Lachmayer, R., Bode, B., Grabe, T., Rettschlag, K.: Integration spezifischer Effekte in Strukturbauteilen mittels additiver Fertigungsverfahren. In: Lachmayer, R., Rettschlag, K., Kaierle, S. (eds.) Konstruktion für die Additive Fertigung 2019, pp. 1–10. Springer Berlin Heidelberg, Berlin Heidelberg (2020).

    Google Scholar 

  6. Lachmayer, R., Gembarski, P., C., Gottwald, P., Lippert, R., B.: The Potential of Product Customization Using Technologies of Additive Manufacturing. In: Bellemare, J., Carrier, S., Nielsen, K., Piller, F., T. (eds.) Managing Complexity 2015, pp. 71–81. Springer International Publishing, Cham (2016).

    Google Scholar 

  7. Yang, S., Tang, Y., Zhao, Y., F.: Assembly-Level Design for Additive Manufacturing: Issues and Benchmark. In: ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 2A, American Society of Mechanical Engineers, Charlotte, North Carolina (2016).

    Google Scholar 

  8. Tang, Y., Yang, S., Zhao, Y., F.: Sustainable Design for Additive Manufacturing Through Functionality Integration and Part Consolidation. In: Muthu, S., S., Savalani, M., M., (eds.) Handbook of Sustainability in Additive Manufacturing, pp. 101–144. Springer Singapore; Singapore (2016).

    Google Scholar 

  9. Ehlers, T., Lippert, R., B., Lachmayer, R.: Bewertung von Strukturbauteilen aus gradierten Materialien für Selektives Laserstrahlschmelzen. In: Lachmayer, R., Lippert, R., B., Kaierle, S. (eds.) Konstruktion für die Additive Fertigung 2018, pp. 109–127. Springer Berlin Heidelberg, Berlin Heidelberg (2019).

    Google Scholar 

  10. Scott-Emuakpor, O., George ,T., Runyon, B., Holycross, C., Langley, B., Sheridan, L., O’Hara, R. Johnson, P., Beck, J.: Investigating Dam** Performance of Laser Powder Bed Fused Components With Unique Internal Structures. In: ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, pp. V07CT35A020. ASME, Oslo Norway (2018).

    Google Scholar 

  11. Scott-Emuakpor, O., George, T., Runyon, B., Langley, B., Sheridan, L., Holycross, C., O’Hara, R., Johnson, P.: Forced-Response Verification of the Inherent Dam** in Additive Manufactured Specimens. In: Kramer, S., Jordan, J.,L., **, H., Carroll, J., Beese, A.,M. (eds.) Mechanics of Additive and Advanced Manufacturing, vol. 8, pp. 81–86. Springer International Publishing, Cham (2019).

    Google Scholar 

  12. 12. Scott-Emuakpor, O., George, T., Runyon, B., Beck, J., Sheridan, L., Holycross, C., O’Hara, R.: Sustainability Study of Inherent Dam** in Additively Manufactured Nickel Alloy. AIAA Journal 57, 456–461 (2019).

    Google Scholar 

  13. 13. Scott-Emuakpor, O., George, T., Runyon, B., Holycross, C., Sheridan, L., O'Hara, R.: Assessing Additive Manufacturing Repeatability of Inherently Damped Nickel Alloy Components. J. Eng. Gas Turbines Power (2019).

    Google Scholar 

  14. Scott-Emuakpor O, Beck J, Runyon B, George T. Validating a Multifactor Model for Dam** Performance of Additively Manufactured Components. AIAA Journal, 1–8 (2020).

    Google Scholar 

  15. Scott-Emuakpor, O., Schoening, A., Goldin, A., Beck, J., Runyon, B., George, T.: Internal Geometry Effects on Inherent Dam** Performance of Additively Manufactured Components. AIAA Journal, 1–7 (2020).

    Google Scholar 

  16. Künneke, T., Zimmer, D.: Funktionsintegration additiv gefertigter Dämpfungsstrukturen bei Biegeschwingungen. In: Richard, H., A., Schramm, B., Zipsner, T. (eds.) Additive Fertigung von Bauteilen und Strukturen, pp. 61–74. Springer Fachmedien Wiesbaden, Wiesbaden (2017).

    Google Scholar 

  17. 17. Schmitz, T., Betters, E., West, J.: Increased dam** through captured powder in additive manufacturing. Manufacturing Letters 25, 1–5 (2020).

    Google Scholar 

  18. Schmitz, T., Gomez, M., Ray, B., Heikkenen, E., Sisco, K., Haines, M., Osborne, J., S.: Dam** and mode shape modification for additively manufactured walls with captured powder. Precision Engineering 66, 110–124 (2020).

    Google Scholar 

  19. Vogel, F., A., Berger, S., Özkaya, E., Biermann, D.: Vibration Suppression in Turning TiAl6V4 Using Additively Manufactured Tool Holders with Specially Structured, Particle Filled Hollow Elements. Procedia Manufacturing 40, 32–7 (2019).

    Google Scholar 

  20. 20. Ehlers, T., Lachmayer, R.: Einsatz additiv gefertigter Partikeldämpfer – eine Übersicht. In: Lachmayer, R., Rettschlag, K., Kaierle, S. (eds.) Konstruktion für die Additive Fertigung 2019, pp. 123–142. Springer Berlin Heidelberg, Berlin Heidelberg (2020).

    Google Scholar 

  21. 21. Ehlers, T., Tatzko, S., Lachmayer, R., Wallaschek, J.: Design of particle dampers for additive manufacturing. Additive Manufacturing 38C, 101752 (2021).

    Google Scholar 

  22. Hopkinson, N., Dickens, P. M., Hague, R., J., M.: Rapid manufacturing: An industrial revolution for the digital age. John Wiley, Chichester England (2006).

    Google Scholar 

  23. 23. Stoffregen, J.: Motorradtechnik. 9th edn. Springer Fachmedien Wiesbaden, Wiesbaden (2018).

    Google Scholar 

  24. Tarabini, M., Mauri, N., Gaudio, I., Cinquemani, S., Moorhead, A., P., Bongiovanni, R., Feletti, F.: Hand-arm vibration in motocross: measurement and mitigation actions. Muscle Ligaments and Tendons J 10(2), 280–289 (2020).

    Google Scholar 

  25. Poole. C., J., M., Mason, H., Harding, A.-H.: The relationship between clinical and standardized tests for hand-arm vibration syndrome. Occupational Mededicine 66(4), 285–291 (2016).

    Google Scholar 

  26. ISO 5349–1: Mechanical vibration – Measurement and evaluation of human exposure to hand-transmitted vibration – Part 1: General requirements (2001).

    Google Scholar 

  27. Fasana, A., Giorcelli, E., A.: Vibration absorber for motorcycle handles. Meccanica 45(1), 79–88 (2010).

    Google Scholar 

  28. 28. Bovenzi, M.: Exposure-response relationship in the hand-arm vibration syndrome: an overview of current epidemiology research. International archives of occupational and environmental health 71(8), 509-519 (1998).

    Google Scholar 

  29. Mirbod, S., M., Yoshida, H., Jamali, M., Masamura, K., Inaba, R., Iwata, H.: Assessment of hand-arm vibration exposure among traffic police motorcyclists. International archives of occupational and environmental health 70(1), 22–28 (1997).

    Google Scholar 

  30. 30. Jelačić, Z., Pikula, B.: Vibration Analysis of Motorcycle Handles. In: Karabegović, I., (eds.) New Technologies, Development and Application, vol. 42, pp. 196–201. Springer International Publishing, Cham (2019).

    Google Scholar 

  31. 31. Chen, H.-C., Chen, W.-C., Liu, Y.-P., Chen, C.-Y., Pan, Y.-T.: Whole-body vibration exposure experienced by motorcycle riders – An evaluation according to ISO 2631-1 and ISO 2631-5 standards. International Journal of Industrial Ergonomics 39(5), 708-718 (2009).

    Google Scholar 

  32. Noh, J., M., Rezali, K., A., M., As’arry, A., Jalil, N., A., A.: Transmission of vibration from motorcycle handlebar to the hand. Journal of Society of Automotive Engineers Malaysia. 1(3), 191–197 (2017)

    Google Scholar 

  33. 33. Burg, H., Moser, A.: Handbuch Verkehrsunfallrekonstruktion. 3rd edn. Springer Fachmedien Wiesbaden, Wiesbaden (2017).

    Google Scholar 

  34. Baad, S., M., Patil, R., J., Qaimi, M., G.: Hand Arm Vibration Alleviation of Motor-cycle Handlebar using Particle Damper. International Journal of Engineering and Manufacturing 7(1), 26–40 (2017).

    Google Scholar 

  35. 35. Ehlers, T., Lachmayer, R., Vajna, S., Halle, T.: Producibility. In: Vajna, S., (eds.) Integrated Design Engineering, pp. 287–323. Springer International Publishing, Cham (2020).

    Google Scholar 

  36. Friend, R., D., Kinra, V., K.: Particle Impact Dam**. Journal of Sound and Vibration 233(1), 93–118 (2000).

    Google Scholar 

  37. Lu, Z., Wang, Z., Masri, S., F., Lu, X.: Particle impact dampers: Past, present, and future. Structural Control and Health Monitoring 25(1) e2058 (2017).

    Google Scholar 

  38. Papalou, A., Masri, S., F.: Performance of Particle Dampers Under Random Excitation. Journal of Sound and Vibration 118(4), 614–621 (1996).

    Google Scholar 

  39. Panossian, H., V.: Structural Dam** Enhancement Via Non-Obstructive Particle Dam** Technique. Journal of Vibration and Acoustics 114(1), 101–105 (1992).

    Google Scholar 

  40. Fowler, B., L., Flint, E., M., Olson, S., E.: Effectiveness and predictability of particle dam**. In: Hyde, T., T. (eds.) SPIE's 7th Annual International Symposium on Smart Structures and Materials, pp. 356–367. CA: SPIE, Newport Beach (2000).

    Google Scholar 

  41. Olson, S.,E.: An analytical particle dam** model. Journal of Sound and Vibration 264(5), 1155–1166 (2003).

    Google Scholar 

  42. 42. Saeki, M.: Analytical study of multi-particle dam**. Journal of Sound and Vibration 281(3-5), 1133–1144 (2005).

    Google Scholar 

  43. 43. ** in centrifugal field of gear transmission. Journal of Sound and Vibration 366, 62-80 (2016).

    Google Scholar 

  44. Mao, K., Wang, M.,Y., Xu, Z., Chen, T.: Simulation and Characterization of Particle Dam** in Transient Vibrations. Journal of Sound and Vibration 126(2), 202 -211 (2004).

    Google Scholar 

  45. Fowler, B.,L., Flint, E., M., Olson, S., E.: Design methodology for particle dam**. In: Inman, D.,J. (eds.) SPIE's 8th Annual International Symposium on Smart Structures and Materials, pp. 186–197. SPIE, Newport Beach (2001).

    Google Scholar 

  46. Kronslev, K.: Ducati Monster 1100S, https://grabcad.com/library/ducati-monster-1100s.last accessed 2020/11/23.

  47. Croccolo, D., De Agostinis, M., Vincenzi, N.: Analytical, Numerical and Experimental Study of the Effects of Braking on Single Disc Motorcycle Forks. In: Öchsner, A., Da Silva, L., F., M., Altenbach, H. (eds.) Materials with Complex Behaviour II, vol. 16, pp. 51–79, Springer Berlin Heidelberg, Berlin Heidelberg (2012).

    Google Scholar 

  48. 48. Croccolo, D., De Agostinis, M.: Motorbike Suspensions. Springer London, London (2013).

    Google Scholar 

  49. 49. Croccolo, D., De Agostinis, M., Vincenzi, N.: An analytical approach to the structural design and optimization of motorbike forks. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 226(2), 158–168 (2012).

    Google Scholar 

  50. 50. Rohmert, W.: Maximalkräfte von Männern im Bewegungsraum der Arme und Beine. pp. 30. VS Verlag für Sozialwissenschaften, Wiesbaden (1966).

    Google Scholar 

  51. 51. Fritzsche, J.: Selbstverteidigung. In: Heimann, R., Fritzsche, J. (eds.) Gewaltprävention in Erziehung, Schule und Verein, pp. 205–228. Springer Fachmedien Wiesbaden, Wiesbaden (2020).

    Google Scholar 

  52. Tshabalala, L., Sono, O., Makoana, W., Masindi, J., Maluleke, O., Johnston, C., Masete, S.: Axial fatigue behaviour of additively manufactured tool steels. Materials Today: Proceedings 2020 (2020).

    Google Scholar 

  53. 53. Croccolo, D, De Agostinis, M., Fini, S., Olmi, G., Robusto, F., Ćirić Kostić, S., Vranić, A., Bogojević, N.: Fatigue Response of As-Built DMLS Maraging Steel and Effects of Aging, Machining, and Peening Treatments. Metals 8(7), 505 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Ehlers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ehlers, T., Lachmayer, R. (2021). Design of a Motorcycle Triple Clamp Optimised for Stiffness and Dam**. In: Pfingstl, S., Horoschenkoff, A., Höfer, P., Zimmermann, M. (eds) Proceedings of the Munich Symposium on Lightweight Design 2020. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63143-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63143-0_1

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63142-3

  • Online ISBN: 978-3-662-63143-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation