Disorders of Cellular Trafficking

  • Chapter
  • First Online:
Inborn Metabolic Diseases

Abstract

Cellular trafficking is essential to maintain critical biological functions. The machinery of proteins and the mechanisms that regulate membrane trafficking is immense and tend to be cell and tissue specific. Mutations in more than 300 genes are known to be associated with disorders of cellular trafficking and include those that affect: (i) membrane trafficking, that mediate the most important pathway to move cargo using membrane bound transport vesicles; (ii) membrane contact sites (MCS) or areas of close apposition between the membranes of organelles; (iii) Other mechanisms such as cytoskeleton mediated cargo/organelle transport, transcytosis, regulation of membrane phospholipids, and gap junctions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 299.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prinz WA, Toulmay A, Balla T (2020) The functional universe of membrane contact sites. Nat Rev Mol Cell Biol 21(1):7–24

    Article  CAS  PubMed  Google Scholar 

  2. Jackson L (2019) Overview: Traffic at atomic resolution. Traffic 20(12):889

    Article  CAS  PubMed  Google Scholar 

  3. Herrmann JM, Spang A (2015) Intracellular parcel service: current issues in intracellular membrane trafficking. Methods Mol Biol 1270:1–12

    Article  CAS  PubMed  Google Scholar 

  4. De Matteis MA, Luini A (2011) Mendelian disorders of membrane trafficking. N Engl J Med 365(10):927–938

    Article  PubMed  Google Scholar 

  5. Tokarev A, Alfonso A, Segev N (2000-2013) Overview of intracellular compartments and trafficking pathways. NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health. Madame Curie Bioscience Database (Internet). Austin. Landes Bioscience

    Google Scholar 

  6. Faini M, Beck R, Wieland FT, Briggs JAG (2013) Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol 23(6):279–288

    Article  CAS  PubMed  Google Scholar 

  7. Passemard S, Perez F, Colin-Lemesre E et al (2017) Golgi trafficking defects in postnatal microcephaly: the evidence for “Golgipathies”. Prog Neurobiol 153:46–63

    Article  CAS  PubMed  Google Scholar 

  8. Wang B, Stanford KR, Kundu M (2020) ER-to-Golgi trafficking and its implication in neurological diseases. Cell 9(2):408

    Article  CAS  Google Scholar 

  9. McMahon HT, Boucrot E (2011) Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12(8):517–533

    Article  CAS  PubMed  Google Scholar 

  10. Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194

    Article  CAS  PubMed  Google Scholar 

  11. Lamaze C, Tardif N, Dewulf M et al (2017) The caveolae dress code: structure and signaling. Curr Opin Cell Biol 47:117–125

    Article  CAS  PubMed  Google Scholar 

  12. Wennerberg K (2005) The Ras superfamily at a glance. J Cell Sci 118:843–846

    Article  CAS  PubMed  Google Scholar 

  13. Morgan NE, Cutrona MB, Simpson JC (2019) Multitasking Rab proteins in autophagy and membrane trafficking: a focus on Rab33b. Int J Mol Sci 20(16):3916

    Article  CAS  PubMed Central  Google Scholar 

  14. Shi M, Shi C, Xu Y (2017) Rab GTPases: the key players in the molecular pathway of Parkinson’s disease. Front Cell Neurosci 11:81

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sacher M, Shahrzad N, Kamel H et al (2019) TRAPPopathies: an emerging set of disorders linked to variations in the genes encoding transport protein particle (TRAPP)-associated proteins. Traffic 20:5–26

    Article  CAS  PubMed  Google Scholar 

  16. Stanga D, Zhao Q, Milev MP et al (2019) TRAPPC11 functions in autophagy by recruiting ATG28-WIPI4/WDR45 to preautophagosomal membranes. Traffic 20:325–345

    Article  CAS  PubMed  Google Scholar 

  17. Gambardella S, Biagioni F, Ferese R (2016) Vacuolar protein sorting genes in Parkinson’s disease: a re-appraisal of mutations detection rate and neurobiology of disease. Front Neurosci 10:532

    Article  PubMed  PubMed Central  Google Scholar 

  18. Steel D, Zech M, Zhao C (2020) Loss-of-function variants in HOPS complex genes VPS16 and VPS41 cause early onset dystonia associated with lysosomal abnormalities. https://doi.org/10.1002/ana.25879. Online ahead of print

  19. Südhof TC, Rothman JE (2009) Membrane fusion: grappling with SNARE and SM proteins. Science 323:474–477

    Article  PubMed  PubMed Central  Google Scholar 

  20. Anitei M, Hoflack B (2001) Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nat Cell Biol 14(1):11–19

    Article  Google Scholar 

  21. Scorrano L, De Matteis MA, Emr S et al (2019) Coming together to define membrane contact sites. Nat Commun 10:1287

    Article  PubMed  PubMed Central  Google Scholar 

  22. ** HA, Kraft LM, Chen W et al (2016) Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities. J Cell Biol 213:513–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Phillips MJ, Voeltz GK (2016) Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol 17:69–82

    Article  CAS  PubMed  Google Scholar 

  24. Kapogiannis D (2020) Exosome biomarkers revolutionize preclinical diagnosis of neurodegenerative diseases and assessment of treatment responses in clinical trials. Adv Exp Med Biol 1195:149

    Article  CAS  PubMed  Google Scholar 

  25. Pulgar VM (2019) Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci 12:1019

    Article  PubMed  PubMed Central  Google Scholar 

  26. Graap M, Wrede A, Schweizer M et al (2013) Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun 4:2123

    Article  Google Scholar 

  27. Gantzel RH, Mogensen LS, Mikkelsen SA et al (2017) Disease mutation reveal residues critical to the interaction of P4-ATPases with lipid substrates. Sci Rep 7(1):10418

    Article  PubMed  PubMed Central  Google Scholar 

  28. Giaume CB, Naus CC, Saez JC, Leybaert L (2021) Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev 101(1):93–145

    Article  CAS  PubMed  Google Scholar 

  29. García-Cazorla A, Saudubray JM (2018) Cellular neurometabolism: a tentative to connect cell biology and metabolism in neurology. J Inherit Metab Dis 41(6):1043–1054

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wojnacki J, Galli T (2016) Membrane traffic during axon development. Dev Neurobiol 76(11):1185–1200

    Article  PubMed  Google Scholar 

  31. Lalani SR, Liu P, Rosenfeld JA et al (2016) Recurrent muscle weakness with rhabdomyolysis, metabolic crises, and cardiac arrhythmia due to bi-allelic TANGO2 mutations. Am J Hum Genet 98:347–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kremer LS, Distelmaier F, Alhaddad B et al (2016) Bi-allelic truncating mutations in TANGO2 cause infancy-onset recurrent metabolic crises with encephalocardiomyopathy. Am J Hum Genet 98:58–362

    Article  Google Scholar 

  33. Bérat CM, Montealegre S, Wiedemann A (2020) Clinical and biological characterization of 20 patients with TANGO2 deficiency indicates novel triggers of metabolic crises and no primary energetic defect. J Inherit Metab Dis. https://doi.org/10.1002/jimd.12314. Online ahead of print

  34. Covone AE, Fiorillo C, Acquaviva M et al (2016) WES in a family trio suggests involvement of TECPR2 in a complex form of progressive motor neuron disease. Clin Genet 90(2):182–185

    Article  CAS  PubMed  Google Scholar 

  35. Khani M, Taheri H, Shamshiri H et al (2019) Continuum of phenotypes in hereditary motor and sensory neuropathy with proximal predominance and Charcot-Marie-Tooth patients with TFG mutation. Am J Med Genet A 179(8):1507–1515

    Article  CAS  PubMed  Google Scholar 

  36. Paloneva J, Manninen T, Christman G (2002) Mutations in two genes encoding different subunits of a receptor signaling complex result in an identical disease phenotype. Am J Hum Genet 71:656–662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cacciagli P, Desvignes JP, Girard N et al (2014) AP1S2 is mutated in X-linked Dandy-Walker malformation with intellectual disability, basal ganglia disease and seizures (Pettigrew syndrome). Europ J Hum Genet 22:363–368

    Article  CAS  PubMed  Google Scholar 

  38. Sanger A, Hirst J, Davies AK, Robinson MS (2019) Adaptor protein complexes and disease at a glance. J Cell Sci 132(20):jcs222992

    Article  CAS  PubMed  Google Scholar 

  39. Han C, Alkhater R, Froukh T et al (2016) Epileptic encephalopathy caused by mutations in the guanine nucleotide exchange factor DENND5A. Am J Hum Genet 99:1359–1367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Banne E, Atawneh O, Henneke M et al (2013) West syndrome, microcephaly, grey matter heterotopia and hypoplasia of corpus callosum due to a novel ARFGEF2 mutation. J Med Genet 50:772–775

    Article  CAS  PubMed  Google Scholar 

  41. Gupta HV, Vengoechea J, Sahaya K, Virmani T (2015) A splice site mutation in ATP6AP2 causes X-linked intellectual disability, epilepsy, and parkinsonism. Parkinsonism Relat Disord 21:1473–1475

    Article  PubMed  Google Scholar 

  42. Chai M, Su L, Hao X et al (2018) Identification of genes and signaling pathways associated with arthrogryposis-renal dysfunction-cholestasis syndrome using weighted correlation network analysis. Int J Mol Med 42(4):2238–2246

    CAS  PubMed  Google Scholar 

  43. Liu H, Wu C (2017) Charcot Marie tooth 2B peripheral sensory neuropathy: how Rab7 mutations impact NGF signalling. Int J Mol Sci 18(2):324

    Article  PubMed Central  Google Scholar 

  44. Cullup T, Kho AL, Dionisi-Vici C et al (2013) Recessive mutations in EPG5 cause Vici syndrome, a multisystem disorder with defective autophagy. Nat Genet 45(1):83–87

    Article  CAS  PubMed  Google Scholar 

  45. Zatyka M, Sarkar S, Barrett T (2020) Autophagy in rare (NonLysosomal) neurodegenerative diseases. J Mol Biol 432(8):2735–2753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sleigh JN, Tossor AM, Fellows AD et al (2019) Axonal transport and neurological disease. Nat Rev Neurol 15(12):691–703

    Article  PubMed  Google Scholar 

  47. Namba T, Funahashi Y, Nakamuta S et al (2015) Extracellular and intracellular signaling for neuronal polarity. Physiol Rev 95:995–1024

    Article  CAS  PubMed  Google Scholar 

  48. Cortès-Saladelafont E, Lipstein N, García-Cazorla À (2018) Presynaptic disorders: a clinical and pathophysiological approach focused on the synaptic vesicle. J Inherit Metab Dis 41(6):1131–1145

    Article  PubMed  Google Scholar 

  49. Radler MR, Suber A, Spiliotis ET (2020) Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 105:103492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yarwood R, Hellicar J, Woodman PG, Lowe M (2020) Membrane trafficking in health and disease. Dis Model Mech 13(4):dmm043448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mutoh H, Kato M, Akita T et al (2018) Biallelic variants in CNPY3, encoding an endoplasmic reticulum chaperone, cause early-onset epileptic encephalopathy. Am J Hum Genet 102:321–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Olson HE, Jean-Marcais N, Yang E et al (2018) PACS2heterozygous missense variant causes neonatal-onset developmental epileptic encephalopathy, facial dysmorphism, and cerebellar dysgenesis. Am J Hum Genet 102:995–1007. Note: Erratum: Am. J. Hum. Genet. 103: 631 only

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Duis J, Dean S, Applegate C et al (2016) KIF5A mutations cause an infantile onset phenotype including severe myoclonus with evidence of mitochondrial dysfunction. Ann Neurol 80:633–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alcantara D, O'Driscoll M (2014) Congenital microcephaly. Am J Med Genet C Semin Med Genet 166C(2):124–139

    Article  PubMed  Google Scholar 

  55. Aligianis IA, Johnson CA, Gissen P et al (2005) Mutations of the catalytic subunit ofRAB3GAP cause Warburg Micro syndrome. Nat Genet 37:221–223

    Article  CAS  PubMed  Google Scholar 

  56. Stanga D, Qingchuan A, Milev MP (2019) TRAPPC11 functions in autophagy by recruiting ATG2B-WIPI4/WDR45 to preautophagosomal membranes. Traffic 20(5):325–345

    Article  CAS  PubMed  Google Scholar 

  57. Sferra A, Petrini S, Bellacchio E et al (2020) TUBB variants underlying different phenotypes result in altered vesicle trafficking and microtubule dynamics. Int J Mol Sci 21(4):1385

    Article  CAS  PubMed Central  Google Scholar 

  58. Aggarwal S, Bhowmik AD, Ramprasad VL et al (2016) A splice site mutation in HERC1 leads to syndromic intellectual disability with macrocephaly and facial dysmorphism: further delineation of the phenotypic spectrum. Am J Med Genet 170A:1868–1873

    Article  Google Scholar 

  59. Reijnders MRF, Ansor NM, Kousi M et al (2017) RAC1 missense mutations in developmental disorders with diverse phenotypes. Am J Hum Genet 101:466–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Edvardson S, Ashikov A, Jalas C et al (2013) Mutations in SLC35A3cause autism spectrum disorder, epilepsy and arthrogryposis. J Med Genet 50:733–739

    Article  CAS  PubMed  Google Scholar 

  61. Reinstein E, Drasinover V, Lotan R, Gal-Tanamy M, Nachman IB, Eyal E, Jaber L, Magal N, Shohat M et al (2018) Mutations in ERGIC1 cause arthrogryposis multiplex congenita, neuropathic type. Clin Genet 93:160–163

    Article  CAS  PubMed  Google Scholar 

  62. Gueneau L, Fish RJ, Shamseldin HE et al (2018) KIAA1109 variants are associated with a severe disorder of brain development and arthrogryposis. Am J Hum Genet 102:116–132

    Article  CAS  PubMed  Google Scholar 

  63. Smith H, Galmes R, Gogolina E et al (2012) Associations among genotype, clinical phenotype, and intracellular localization of trafficking proteins in ARC syndrome. Hum Mutat 33:1656–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bogershausen N, Shahrzad N, Chong JX et al (2013) Recessive TRAPPC11 mutations cause a disease spectrum of limb girdle muscular dystrophy and myopathy with movement disorder and intellectual disability. Am J Hum Genet 93:181–190

    Article  PubMed  PubMed Central  Google Scholar 

  65. Garbern JY, Neumann M, Trojanowski JQ et al (2010) A mutation affecting the sodium/proton exchanger, SLC9A6, causes mental retardation with tau deposition. Brain 133:1391–1402

    Article  PubMed  PubMed Central  Google Scholar 

  66. Martinelli S, Krumbach OHF, Pantaleoni F et al (2018) Functional dysregulation of CDC42 causesdiverse developmental phenotypes. Am J Hum Genet 102:309–320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tessa A, Battini R, Rubegni A et al (2016) Identification of mutations in AP4S1/SPG52 through next generation sequencing in three families. Eur J Neurol 23(10):1580–1587

    Article  CAS  PubMed  Google Scholar 

  68. Zivony-Elboum Y, Westbroek W, Kfir N (2012) A founder mutation in Vps37A causes autosomal recessive complex hereditary spastic paraparesis. J Med Genet 49(7):462–472

    Article  CAS  PubMed  Google Scholar 

  69. Bandres-Ciga S, Saez-Atienzar S, Bonet-Ponce L (2019) The endocytic membrane trafficking pathway plays a major role in the risk of Parkinson’s disease. Mov Disord 34(4):460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Giannandrea M, Bianchi V, Mignogna ML et al (2010) Mutations in the small GTPase gene RAB39B are responsible for X-linked mental retardation associated with autism, epilepsy, and macrocephaly. Am J Hum Genet 86:185–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Peeters K, Litvinenko I, Asselbergh B et al (2013) Molecular defects in the motor adaptor BICD2 cause proximal spinal muscular atrophy with autosomal-dominant inheritance. Am J Hum Genet 92(6):955–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kurth I, Pamminger T, Hennings JC et al (2009) Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet 41:1179–1181

    Article  CAS  PubMed  Google Scholar 

  73. Guerreiro R, Wojtas A, Bras J et al (2013) TREM2 variants in Alzheimer’s disease. N Eng J Med 368:117–127

    Article  CAS  Google Scholar 

  74. Piano Mortari E, Folgiero V, Marcellini V (2018) The Vici syndrome protein EPG5 regulates intracellular nucleic acid trafficking linking autophagy to innate and adaptive immunity. Autophagy 14(1):22–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ajitkumar A, Yarrarapu SNS, Ramphul K (2020) Chediak Higashi Syndrome. 2020 Aug 13. In: StatPearls [Internet]. StatPearls Publishing, Treasure Island (FL). PMID: 29939658

    Google Scholar 

  76. De Jesus RW, Young LR (2020) Hermansky-Pudlak syndrome. Semin Respir Crit Care Med 41(2):238–246

    Article  Google Scholar 

  77. Fuchs-Telem D, Stewart H, Rapaport D et al (2011) CEDNIK syndrome results from loss-of-function mutations in SNAP29. Br J Dermatol 164:610–616

    CAS  PubMed  Google Scholar 

  78. Cohn DH, Ehtesham N, Krakow D et al (2003) Mental retardation and abnormal skeletal development (Dyggve-Melchior-Clausen dysplasia) due to mutations in a novel, evolutionarily conserved gene. Am J Hum Genet 72:419–428

    Article  CAS  PubMed  Google Scholar 

  79. Staufner C, Peters B, Wagner M et al (2020) Defining clinical subgroups and genotype-phenotype correlations in NBAS-associated disease across 110 patients. Genet Med 22(3):610–621

    Article  CAS  PubMed  Google Scholar 

  80. Schmidt WM, Kraus C, Hoger H et al (2007) Mutation in the Scyl1 gene encoding amino-terminal kinase-like protein causes a recessive form of spinocerebellar neurodegeneration. EMBO Rep 8:691–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Lewis RA, Nussbaum RL, Brewer ED (2001) Lowe syndrome. Jul 24 [updated 2019 Apr 18]. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, LJH B, Stephens K, Amemiya A (eds) GeneReviews® [Internet]. University of Washington, Seattle; 1993–2020, Seattle

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángeles García-Cazorla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Cazorla, Á., Dionisi-Vici, C., Saudubray, JM. (2022). Disorders of Cellular Trafficking. In: Saudubray, JM., Baumgartner, M.R., García-Cazorla, Á., Walter, J. (eds) Inborn Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-63123-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-63123-2_44

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-63122-5

  • Online ISBN: 978-3-662-63123-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation