Proteinarrays

  • Chapter
  • First Online:
Immunoassays

Zusammenfassung

Seit Ende der 1980er-Jahre und spätestens nach der Fertigstellung der Sequenzierung des menschlichen Genoms im Jahr 2003 stieg das Interesse an der Entwicklung und Anwendung von Microarrays zur Analyse von Genexpressionsmustern und Einzelnucleotid-Polymorphismen stetig. Die Microarray-Technologie hat sich seitdem laufend weiterentwickelt und ist aus der Werkzeugkiste der Lebenswissenschaften nicht mehr wegzudenken. Proteinarrays spielen ihre Stärken durch einen geringen Probenverbrauch und einen geringen Verbrauch an Reagenzien, kombiniert mit einer hohen Probenkapazität, im Vergleich zu klassischen gelbasierten Proteomik-Techniken aus. Mit der Ambient Analyte Theory hat Roger Ekins die theoretischen und praktischen Grundlagen für Multi-Spot und Multi-Analyt-Immunoassays gelegt (Ekins 1990). Im Vergleich zu DNA-Microarrays stellen Proteinarrays aber auch einige Herausforderungen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 54.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Literatur

  • Akbani R, Becker KF, Carragher N, Goldstein T, de Koning L, Korf U, Liotta L, Mills GB, Nishizuka SS, Pawlak M, Petricoin EF 3rd, Pollard HB, Serrels B, Zhu J. (2014) Realizing the promise of reverse phase protein arrays for clinical, translational, and basic research: a workshop report: the RPPA (Reverse Phase Protein Array) society. Mol Cell Proteomics. 13(7):1625–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andresen H, Grotzinger C, Zarse K, Birringer M, Hessenius C , Kreuzer OJ, Ehrentreich-Förster E, Bier FF (2005) Peptide microarrays with site-specifically immobilized synthetic peptides for antibody diagnostics. Sensors and Actuators B 113 (2006) 655–663.

    Google Scholar 

  • Andresen H, Zarse K, Grotzinger C, Hollidt JM, Ehrentreich-Förster E, Bier FF, Kreuzer OJ (2006) Development of peptide microarrays for epitope map** of antibodies against the human TSH receptor. Journal of Immunological Methods 315:11–18.

    Article  CAS  PubMed  Google Scholar 

  • Baskin JM, Prescher JA, Laughlin TL, Agard NJ, Chang PV, Miller IA, Lo A, Codelli JA, Bertozzi CR (2007) Copper-free click chemistry for dynamic in vivo imaging. PNAS 104(43):16793–16797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichner J, Heubach Y, Ruff M, Kohlhof H, Strobl S, Mayer B, Pawlak M, Templin MF, Zell A (2014) RPPApipe: a pipeline for the analysis of reverse-phase protein array data. Biosystems 122:19–24.

    Article  CAS  PubMed  Google Scholar 

  • Einhorn L, Hofstetter G, Brandt S, Hainisch EK, Fukuda I, Kusano K, Scheynius A, Mittermann I, Resch-Marat Y, Vrtala S, Valenta R, Marti E, Rhyner C, Crameri R, Satoh R, Teshima R, Tanaka A, Sato H, Matsuda H, Pali-Schöll I, Jensen-Jarolim E. (2018) Molecular allergen profiling in horses by microarray reveals Fag e 2 from buckwheat as a frequent sensitizer. Allergy 73(7): 1436–1446.

    Article  CAS  PubMed  Google Scholar 

  • Ekins R, F. Chu, Biggart E. (1990) Multispot, multianalyte, immunoassay. Ann. Biol. Clin. 48:655–666.

    CAS  Google Scholar 

  • Groll N, Emele F, Poetz O, Rothbauer U (2015) Towards multiplexed protein-protein interaction analysis using protein tag-specific nanobodies. J Proteomics 127(Pt B):289–99.

    Article  CAS  PubMed  Google Scholar 

  • Henjes F, Bender C, von der Heyde S, Braun L, Mannsperger HA, Schmidt C, Wiemann S, Hasmann M, Aulmann S, Beissbarth T, Korf U (2012) Strong EGFR signaling in cell line models of ERBB2-amplified breast cancer attenuates response towards ERBB2-targeting drugs. Oncogenesis. 1:e16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, He X, Baggerly KA, Coombes KR, Hennessy BT, Mills GB (2007) Non-parametric quantification of protein lysate arrays. Bioinformatics 23, 1986–1994.

    Article  CAS  PubMed  Google Scholar 

  • Huang R, Jiang W, Yang J, Mao YQ, Zhang Y, Yang W, Yang D, Burkholder B, Huang RF, Huang RP (2010) A biotin label-based antibody array for high-content profiling of protein expression. Cancer Genomics Proteomics. 3:129–41.

    Google Scholar 

  • Kolb HC, Sharpless BK (2003) The growing impact of click chemistry on drug discovery. Drug Discovery Today. 8(24):1128–1137.

    Article  CAS  PubMed  Google Scholar 

  • Kolb HC, Finn MG, Sharpless KB (2001) Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition. 40 (11): 2004–2021.

    Article  CAS  PubMed  Google Scholar 

  • Kusnezow W, Banzon V, Schröder C, Schaal R, Hoheisel JD, Rüffer S, Luft P, Duschl A, Syagailo YV (2007) Antibody microarray-based profiling of complex specimens: systematic evaluation of labeling strategies. Proteomics. 7(11):1786–99.

    Article  CAS  PubMed  Google Scholar 

  • Loebke C, Sueltmann H, Schmidt C, Henjes F, Wiemann S, Poustka A, Korf U (2007) Infrared-based protein detection arrays for quantitative proteomics. Proteomics 7: 558–564.

    Article  CAS  PubMed  Google Scholar 

  • Mathieson W, Thomas GA (2013) Simultaneously extracting DNA, RNA, and protein using kits: is sample quantity or quality prejudiced? Anal Biochem. 433(1):10–8.

    Article  CAS  PubMed  Google Scholar 

  • Miersch S, LaBaer J (2011) Nucleic Acid programmable protein arrays: versatile tools for array-based functional protein studies. Curr Protoc Protein Sci. Chapter 27:Unit 27.2.

    Google Scholar 

  • Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, Emmert-Buck MR, Roth MJ, Petricoin IE, Liotta LA (2001) Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front. Oncogene 20:1981–1989.

    Article  CAS  PubMed  Google Scholar 

  • Pluckthun A (2015) Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol 55:489–511.

    Article  CAS  PubMed  Google Scholar 

  • Poetz O, Ostendorp R, Brocks B, Schwenk JM, Stoll D, Joos TO, Templin MF (2005) Protein microarrays for antibody profiling: specificity and affinity determination on a chip. Proteomics 5(9):2402–11.

    Article  CAS  PubMed  Google Scholar 

  • Renberg B, Nordin J, Merca A, Uhlén M, Feldwisch J, Nygren PA, Karlström AE (2007) Affibody molecules in protein capture microarrays: evaluation of multidomain ligands and different detection formats. J Proteome Res 6(1):171–9.

    Article  CAS  PubMed  Google Scholar 

  • Schröder C, Jacob A, Tonack S, Radon TP, Sill M, Zucknick M, Rüffer S, Costello E, Neoptolemos JP, Crnogorac-Jurcevic T, Bauer A, Fellenberg K, Hoheisel JD. (2010) Dual-color proteomic profiling of complex samples with a microarray of 810 cancer-related antibodies. Mol Cell Proteomics. 6:1271–80.

    Article  Google Scholar 

  • Schumacher S, Nestler J, Otto T, Wegener M, Ehrentreich-Förster E, Michel D, Wunderlich K, Palzer S, Sohn K, Weber A, Burgard M, Grzesiak A, Teichert A, Brandenburg A, Koger B, Albers J, Nebling E, Bier FF (2012) Highly-integrated lab-on-chip system for point-of-care multiparameter analysis. Lab on chip, 12(3):464–73.

    Article  CAS  Google Scholar 

  • Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M. (2011) Global quantification of mammalian gene expression control. Nature. 473(7347):337–42.

    Article  PubMed  Google Scholar 

  • Skerra A (2008) Alternative binding proteins: anticalins – harnessing the structural plasticity of the lipocalin ligand pocket to engineer novel binding activities. FEBS J 275(11):2677–83.

    Article  CAS  PubMed  Google Scholar 

  • Srinivasan H, Allory Y, Sill M, Vordos D, Alhamdani MS, Radvanyi F, Hoheisel JD, Schröder C (2014) Prediction of recurrence of non muscle-invasive bladder cancer by means of a protein signature identified by antibody microarray analyses. Proteomics 14(11):1333–42.

    Article  CAS  PubMed  Google Scholar 

  • Tiede C, Tang AA, Deacon SE, Mandal U, Nettleship JE, Owen RL, George SE, Harrison DJ, Owens RJ, Tomlinson DC, McPherson MJ (2014) Adhiron: a stable and versatile peptide display scaffold for molecular recognition applications. Protein Eng Des Sel 27(5):145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troncale S, Barbet A, Coulibaly L, Henry E, He B, Barillot E, Dubois T, Hupe P, and de Koning L (2012) NormaCurve: a Super-Curve-based method that simultaneously quantifies and normalizes reverse phase protein array data. PLoS One 7.

    Google Scholar 

  • Trune DR, Larrain BE, Hausman FA, Kempton JB, MacArthur CJ (2011) Simultaneous measurement of multiple ear proteins with multiplex ELISA assays. Hear Res. 275(1–2):1–7.

    Article  CAS  PubMed  Google Scholar 

  • von der Heyde S, Sonntag J, Kaschek D, Bender C, Bues J, Wachter A, Timmer J, Korf U, Beißbarth T (2014) RPPanalyzer toolbox: an improved R package for analysis of reverse phase protein array data. Biotechniques 57(3):125–35.

    Article  PubMed  Google Scholar 

  • Weber LK, Isse A, Rentschler S, Kneusel RE, Palermo A, Hubbuch J, Nesterov-Mueller A, Breitling F, Loeffler FF (2017) Antibody Fingerprints in Lyme Disease Deciphered with High Density Peptide Arrays. Eng. Life Sci. 17 (10), S. 1078–1087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wingren C, Ingvarsson J, Dexlin L, Szul D, Borrebaeck CA (2007) Design of recombinant antibody microarrays for complex proteome analysis: choice of sample labeling-tag and solid support. Proteomics 7(17):3055–65.

    Article  CAS  PubMed  Google Scholar 

  • Wulfkuhle JD, Berg D, Wolff C, Langer R, Tran K, Illi J, Espina V, Pierobon M, Deng J, DeMichele A, Walch A, Bronger H, Becker I, Waldhör C, Höfler H, Esserman L; I-SPY 1 TRIAL Investigators, Liotta LA, Becker KF, Petricoin EF 3rd. (2012) Molecular analysis of HER2 signaling in human breast cancer by functional protein pathway activation map**. Clin Cancer Res. 18(23):6426–35.

    Google Scholar 

  • Yalow RS, Berson SA (1959) Assay of plasma insulin in human subjects by immunological methods. Nature, 184 (Suppl 21):1648–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Griessner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sonntag, J., Griessner, M. (2023). Proteinarrays. In: Raem, A.M., Rauch, P. (eds) Immunoassays. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62671-9_10

Download citation

Publish with us

Policies and ethics

Navigation