Entdeckung von zellulären Innenstrukturen, Funktionen und Dynamik der Zelle

  • Chapter
  • First Online:
Abenteuer Zellbiologie - Streifzüge durch die Geschichte
  • 3555 Accesses

Zusammenfassung

Die Fortentwicklung mikroskopischer Methoden dauert bis in unsere Tage an. Diese Entwicklungen waren und sind immer noch ganz entscheidend für den Fortschritt der Zellbiologie. Dies betrifft eine verbesserte Auflösung und immer anspruchsvollere Markierungsmethoden sowohl in der Licht- als auch in der Elektronenmikroskopie, die nach dem Zweiten Weltkrieg zu einem unverzichtbaren Instrument entwickelt worden war. Letztere erlaubt zwar prinzipiell eine atomare Auflösung, die jedoch ohne experimentell verstärkten Kontrast an biologischem Material wenig Sinn ergibt.  Neue lichtoptische Verfahren erlauben in vivo-Analysen und nähern sich bis auf einen Faktor ~10 der Elektronenmikroskopie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 34.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Zitierte Literatur

  1. Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. M. Schultze’s Arch Micr Anat IX:413–468

    Google Scholar 

  2. De Broglie L (1923) Waves and quanta. Nature 112:540

    Article  Google Scholar 

  3. Baumeister W, Walz J, Zühl F, Seemüller E (1998) The proteasome: Paradigm of a self-compartmentalizing protease. Cell 92:367–380

    Article  CAS  Google Scholar 

  4. Sabatini DD, Bensch K, Barrnett RJ (1963) Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J Cell Biol 17:19–58

    Article  CAS  Google Scholar 

  5. Farquhar MG, Palade GE (1981) The Golgi apparatus (complex) – (1954–1981) – from artifact to center stage. J Cell Biol 91:77s–103s

    Article  CAS  Google Scholar 

  6. Glauert AM, Glauert RH (1958) Araldite as an embedding medium for electron microscopy. J Biophys Biochem Cytol 4:191–194

    Article  CAS  Google Scholar 

  7. Porter K, Bonneville M (1963) An Introduction to the Fine Structure of Cells and Tissues. Lea & Febiger, Philadelphia

    Google Scholar 

  8. Pavelka M, Roth J (2005) Funktionelle Ultrastruktur: Atlas der Biologie und Pathologie von Geweben. Springer, Wien

    Google Scholar 

  9. https://www.drjastrow.de/EMAtlasD.html

  10. Abbe E (1873) Theorie des Mikroskops und der mikroskopischen Wahrnehmung. M. Schultze's Archiv für Mikroskopische Anatomie IX:413–468

    Google Scholar 

  11. Davidovits P, Egger MD (1969) Scanning laser microscope. Nature 223:831

    Article  CAS  Google Scholar 

  12. Klar TA, Hell SW (1999) Subdiffraction resolution in far-field fluorescence microscopy. Optics Lett 24:954–956

    Article  CAS  Google Scholar 

  13. Zernike F (1935) Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung. Zeitschr Tech Physik 1:454–457

    Google Scholar 

  14. Avrameas S (1970) Immunoenzyme techniques: enzymes as markers for the localization of antigens and antibodies. Int Rev Cytol 27:349–385

    Article  CAS  Google Scholar 

  15. Henkel AW, Lübke J, Betz WJ (1996) FM1–43 dye ultrastructural localization in and release from frog motor nerve terminals. Proc Natl Acad Sci USA 93:1918–1923

    Article  CAS  Google Scholar 

  16. Feulgen R, Rossenbeck H (1924) Mikroskopisch-chemischer Nachweis einer Nukleinsäure vom Typus der Thymonukleinsäure und die darauf beruhende elektive Färbung von Zellkernen in mikroskopischen Präparaten. Zschr Physiol Chemie 135:203–249

    Article  CAS  Google Scholar 

  17. Anderson RGW, Falck JR, Goldstein JL, Brown MS (1984) Visualization of acidic organelles in intact cells by electron microscopy. Proc Natl Acad Sci USA 81:4838–4842

    Article  CAS  Google Scholar 

  18. Orci L, Ravazzola M, Amherdt M, Madsen O, Vassalli JD, Perrelet A (1985) Direct identification of prohormone conversion site in insulin secreting cells. Cell 42:671–681

    Article  CAS  Google Scholar 

  19. Bernhard W, Avrameas S (1971) Ultrastructural visualization of cellular carbohydrate components by means of concanavalin A. Exp Cell Res 64:232–236

    Article  CAS  Google Scholar 

  20. Meißlitzer-Ruppitsch C, Röhrl C, Neumüller J, Pavelka M, Ellinger A (2009) Photooxidation technology for correlated light and electron microscopy. J Microsc (Oxf) 235:322–335

    Article  Google Scholar 

  21. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  Google Scholar 

  22. Roth J, Bendayan M, Orci L (1978) Ultrastructural localization of intracellular antigens by the use of protein A-gold complex. J Histochem Cytochem 26:1074–1081

    Article  CAS  Google Scholar 

  23. Howard A, Pelc SP (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosome breakage. Heredity (London) [Suppl] 6:261–273

    Google Scholar 

  24. Bachmann L, Salpeter MM (1965) Autoradiography with the electron microscope. A quantitative evaluation. Lab Invest 14:1041–1053

    CAS  PubMed  Google Scholar 

  25. Caro LG, Palade G (1964) Protein synthesis, storage, and discharge in the pancreatic exocrine cell. An autoradiographic study. J Cell Biol 20:473–495

    Article  CAS  Google Scholar 

  26. Cohn ZA (1963) The fate of bacteria within phagocytic cells. I. The degranulation of isotopically labeled bacteria by polymorphonuclear leucocytes and macrophages. J Exp Med 117:27–42

    Article  CAS  Google Scholar 

  27. Shimomura O, Johnson FH, Saiga Y (1962) Extraction and properties of Halistaurin, a bioluminescent protein from the hydromeduan Halistaura. J Cell Comp Biol 59:223–239

    CAS  Google Scholar 

  28. Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nature Biotechnol 19:137–141

    Article  CAS  Google Scholar 

  29. Dana H, Sun Y, Mohar B, Hulse BK, Kerlin AM et al (2019) High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nature Meth 16:649–657

    Article  CAS  Google Scholar 

  30. Moor H, Mühlethaler K, Waldner H, Frey-Wyssling A (1961) A new freezing-ultramicrotome. J Biophys Biochem Cytol 10:1–13

    Article  CAS  Google Scholar 

  31. Bachmann L, Schmitt WW (1971) Improved cryofixation applicable to freeze etching. Proc Natl Acad Sci USA 68:2149–2152

    Article  CAS  Google Scholar 

  32. Plattner H, Fischer WM, Schmitt WW, Bachmann L (1972) Freeze-etching of cells without cryoprotectants. J Cell Biol 53:116–126

    Article  CAS  Google Scholar 

  33. Brüggeler P, Mayer E (1980) Complete vitrification in pure liquid water and dilute aqueous solutions. Nature 288:569–571

    Article  Google Scholar 

  34. Moor H, Riehle U (1968) Snap freezing under high-pressure: anew fixation technique for freeze-etching. In: Bocciarelli D (Hrsg) Proceedings of the 4th European regional conference electron microscopy, Bd 2. Tipografia Polyglotta Vaticana, Rom, S 33–34

    Google Scholar 

  35. Heuser JE, Reese TS, Dennis MJ, Jan Y, Jan L, Evans L (1979) Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release. J Cell Biol 81:275–300

    Article  CAS  Google Scholar 

  36. Anderson TF (1951) Techniques for the preservation of three-dimensional structure in preparing specimens for the electron microscope. Trans NY Acad Sci (Ser II) 13:130–134

    Article  Google Scholar 

  37. Ruska E (1979) Die frühe Entwicklung der Elektronenlinsen und der Elektronenmikroskopie. Acta Histor Leopoldina 12:3–136

    Google Scholar 

  38. Plattner H, Hentschel J (2017) Zellbiologie, 5. Aufl. Thieme, Stuttgart

    Google Scholar 

  39. Sehring IM, Reiner C, Plattner H (2010) The actin subfamily PtAct4, out of many subfamilies, is differentially localized for specific local functions in Paramecium tetraurelia cells. Eur J Cell Biol 89:509–524

    Article  CAS  Google Scholar 

Ausgewählte Literatur

  1. van Harreveld A, Crowell J, Malhotra SK (1965) A study of extracellular space in central nervous tissue by freeze-substitution. J Cell Biol 25:117–137

    Article  Google Scholar 

  2. Plattner H, Bachmann L (1982) Cryofixation. A tool in biological ultrastructure research. Int Rev Cytol 79:237–304

    Article  CAS  Google Scholar 

  3. Plattner H, Zingsheim HP (1987) Elektronenmikroskopische Methodik in der Zell- und Molekularbiologie. Gustav Fischer, Stuttgart

    Google Scholar 

  4. Knoll G, Braun C, Plattner H (1991) Quenched flow analysis of exocytosis in Paramecium cells: time course, changes in membrane structure, and calcium requirements revealed after rapid mixing and rapid freezing of intact cells. J Cell Biol 113:1295–1304

    Article  CAS  Google Scholar 

  5. Reimer L (1998) Scanning electron microscopy: physics of image formation and microanalysis, 2. Aufl. Springer, Berlin

    Book  Google Scholar 

  6. Frank J (2006) Electron tomography: methods for three-dimensional visualization of structures in the cell. Springer, New York

    Book  Google Scholar 

  7. Hell SW (2014) Nobel lecture. file:///C:/Users/User/AppData/Local/Temp/hell-lecture-1.pdf

    Google Scholar 

  8. Luckner M, Wanner G (2018) From light microscopy to analytical scanning electron microscopy (SEM) and focused ion beam (FIB)/SEM) in biology: fixed coordinates, flat embedding, absolute references. Microsc Microanal 24:526–544

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Plattner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE , ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plattner, H. (2021). Entdeckung von zellulären Innenstrukturen, Funktionen und Dynamik der Zelle. In: Abenteuer Zellbiologie - Streifzüge durch die Geschichte. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62118-9_4

Download citation

Publish with us

Policies and ethics

Navigation