Energieversorgung der Zelle: Frühe Erfindung von Turbine und ATP als Einheitswährung

  • Chapter
  • First Online:
Abenteuer Zellbiologie - Streifzüge durch die Geschichte
  • 3554 Accesses

Zusammenfassung

Die folgenden Aspekte sind seit einem halben Jahrhundert gut etabliert: Glykolyse im Cytosol und die oxidative Phosphorylierung in den Mitochondrien gewährleisten die Energieversorgung tierischer und pflanzlicher Zellen durch Synthese der „Einheitswährung“ Adenosintriphosphat (ATP) aus dem Umsatz von Glukose. Pflanzenzellen besitzen zusätzlich Chloroplasten, um Sonnenlicht als Primärenergie zur Synthese von Glukose zu nutzen. In beiden Organell-Innenmembranen befinden sich als hervorstechende Gemeinsamkeit H+-ATPase/Synthase-Moleküle, die den Protonengradienten chemiosmotisch wie eine Turbine ausnützen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Zitierte Literatur

  1. Prigogine I, Lefever R (1968) On symmetry-breaking instabilities in dissipative systems, II. J Chem Phys 48:1695–1700

    Article  Google Scholar 

  2. Skou JC (1957) The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochim Biophys Acta 23:394–401

    Article  CAS  Google Scholar 

  3. Pasteur L (1860) Mémoire sur la fermentaçion alcoolique. Ann Chimie Physique 58:323–426

    Google Scholar 

  4. Buchner E (1897) Alkoholische Gärung ohne Hefezellen (Vorläufige Mitteilung). Ber Dt Chem Ges 30:117–124

    Article  CAS  Google Scholar 

  5. Decker H, van Holde KE (2011) Oxygen and the evolution of life. Springer, Heidelberg, New York

    Book  Google Scholar 

  6. Portis AR, Parry MAJ (2007) Discoveries in Rubisco (Ribulose 1,5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynth Res 94:121–143

    Article  CAS  Google Scholar 

  7. Weissbach A, Horecker BL, Hurwitz J (1956) The enzymatic formation of phosphoglyceric acid from ribulose 1,5-diphosphate and carbon dioxide. J Biol Chem 218:795–810

    Article  CAS  Google Scholar 

  8. Highfield PE, Ellis RJ (1978) Synthesis and transport of the small subunit of chloroplast ribulose bisphosphate carboxylase. Nature 271:420–424

    Article  CAS  Google Scholar 

  9. Andersson I, Knight S, Schneider G, Lindqvist Y, Lundqvist T et al (1989) Crystal structure of the active site of ribulose-bisphosphate carboxylase. Nature 337:229–234

    Article  CAS  Google Scholar 

  10. Schimper AFW (1883) Über die Entwicklung der Chlorophyllkörner und Farbkörper. Botan Ztg 41:105–120, 126–131, 137–160

    Google Scholar 

  11. Wehrmeyer W (1963) Über Membranbildungsprozesse im Chloroplasten. I Mitt. Zur Morphogenese der Granalamellen. Planta 59:280–295

    Article  Google Scholar 

  12. Altmann R (1890) Die Elementarorganismen und ihre Beziehungen zu den Zellen. Veit & Co, Leipzig

    Google Scholar 

  13. Saussure N-T de (1797) Essai sur cette question: la formation de l’acide carbonique est-elle essentielle à la vegetation? Ann Chimie 24:135–149, 227–228, 336–337

    Google Scholar 

  14. Fothergil LA (1986) The evolution of the glycolytic pathway. Trends Biochem Sci 11:47–51

    Article  Google Scholar 

  15. Warburg O (1908) Beobachtungen über die Oxydationsprozesse im Seeigelei. Hoppe-Seyler’s Z Physiol Chemie 57:1–16

    Article  Google Scholar 

  16. Warburg O (1914) Zellstruktur und Oxydationsgeschwindigkeit nach Versuchen am Seeigelei. Plüger’s Arch Ges Physiol 158:189–208

    Google Scholar 

  17. Lynen F, Reichert E, Rueff L (1951) Zum biologischen Abbau der Essigsäure. VI. „Aktivierte Essigsäure“, ihre Isolierung und ihre chemische Natur. Justus Liebigs Ann Chem 574:1–32

    Article  CAS  Google Scholar 

  18. Krebs HA (1936) Intermediate metabolism of carbohydrates. Nature 138:288–289

    Article  CAS  Google Scholar 

  19. Jagendorf AT, Uribe EG (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55:170–177

    Article  CAS  Google Scholar 

  20. Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  CAS  Google Scholar 

  21. Yoshida M, Muneyuki E, Hisabori T (2001) ATP synthase – a marvellous rotary engine of the cell. Nat Rev Mol Cell Biol 2:669–677

    Article  CAS  Google Scholar 

  22. Palade GE (1953) An electron microscope study of the mitochondrial structure. J Histochem Cytochem 1:188–211

    Article  CAS  Google Scholar 

  23. Daems WT, Wisse E (1966) Shape and attachment of the cristae mitochondriales in mouse hepatic cell mitochondria. J Ultrastruct Res 16:123–140

    Article  CAS  Google Scholar 

  24. Ruben S, Randall M, Kamen M, Hyde JL (1941) Heavy oxygen (O18) as a tracer in the study of photosynthesis. J Am Chem Soc 63:877–879

    Article  CAS  Google Scholar 

  25. Calvin M, Benson AA (1948) The path of carbon in photosynthesis. Science 107:476–480

    Article  CAS  Google Scholar 

  26. Emerson R (1957) Dependence of yield of photosynthesis in long-wave red on wavelength and intensity of supplementary light. Science 125:746

    Article  Google Scholar 

  27. Govindje SD, Björn LO (2017) Evolution of the Z-scheme of photosynthesis: a perspective. Photosynth Res 133:5–15

    Article  Google Scholar 

  28. Deisenhofer J, Epp O, Miki K, Huber R, Michel H (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3Å resolution. Nature 318:618–624

    Article  CAS  Google Scholar 

  29. Qian P, Siebert CA, Wang P, Canniffe DP, Hunter CN (2018) Cryo-EM structure of the Blastochloris viridis LH1-RC complex at 2.9 Å. Nature 556:203–208

    Article  CAS  Google Scholar 

  30. Höchli M, Hackenbrock CR (1979) Lateral translational diffusion of cytochrome c oxidase in the mitochondrial energy-transducing membrane. Proc Natl Acad Sci USA 76:1236–1240

    Article  Google Scholar 

  31. Allen RD (1995) Membrane tubulation and proton pumps. Protoplasma 189:1–8

    Article  CAS  Google Scholar 

  32. Jiko C, Davies KM, Shinzawa-Itoh K, Tani K, Maeda S, et al. (2015) Bovine F1F0 ATP synthase monomers bend the lipid bilayer in 2D membrane crystals. eLife 4:e06119. https://doi.org/10.7554/eLife.06119

  33. Harner ME, Unger A-K, Geerts WJC, Mari M, Izawa T et al (2016). An evidence based hypothesis on the existence of two pathways of mitochondrial crista formation. eLife 5:e18853. https://doi.org/10.7554/eLife.18853

  34. Veiga A, Arrabaça JD, Loureir MC (2003) Cyanide-resistant respiration, a very frequent metabolic pathway in yeasts. FEMS Yeast Res 3:239–245

    Article  CAS  Google Scholar 

  35. Wolf DM, Segawa M, Kondadi AK, Anand R, Bailey ST et al (2019) Individual cristae within the same mitochondrion display different membrane potentials and are functionally independent. EMBO J 38:e101056

    Article  CAS  Google Scholar 

  36. Giorgio V, von Stockum S, Antoniel M, F A, Fogolari F et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110:5887–5892

    Article  CAS  Google Scholar 

  37. The Nobel Prize in Physiology or Medicine 2019. NobelPrize.org. Nobel Media AB 2020. https://www.nobelprize.org/prizes/medicine/2019/press-release/

  38. Semenza GL, Wang GL (1992) A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human Erythropoetin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12:5447–5454

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Plattner H, Hentschel J (2017) Zellbiologie, 5. Aufl. Thieme, Stuttgart, New York

    Google Scholar 

  40. Plattner H, Winkler H, Hörtnagl H, Pfaller W (1969) A study of the adrenal medulla and its subcellular organelles by the freeze-etching method. J Ultrastruct Res 28:191–202

    Article  CAS  Google Scholar 

Ausgewählte Literatur

  1. Park RB, Biggins J (1964) Quantasome: size and composition. Science 144:1009–1011

    Article  CAS  Google Scholar 

  2. Lorimer GH, Badger MR, Andrews TJ (1976) The activation of ribulose-1,5-bisphosphate carboxylase by carbon dioxide and magnesium ions. Kinetics, a suggested mechanism, and physiological implications. Biochemistry 15:529–536

    Article  CAS  Google Scholar 

  3. Jagendorf AT (2002) Photophosphorylation and the chemiosmotic perspective. Photosynth Res 73:233–241

    Article  CAS  Google Scholar 

  4. Nakai M (2018) New perspectives on chloroplast protein import. Plant Cell Physiol 59:1111–1119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helmut Plattner .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer-Verlag GmbH, DE , ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plattner, H. (2021). Energieversorgung der Zelle: Frühe Erfindung von Turbine und ATP als Einheitswährung. In: Abenteuer Zellbiologie - Streifzüge durch die Geschichte. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-62118-9_11

Download citation

Publish with us

Policies and ethics

Navigation