RNA- und DNA-Viren mit reverser Transkription

  • Chapter
  • First Online:
Molekulare Virologie

Zusammenfassung

Die Ortervirales sind eine neu geschaffene Ordnung und umfassen Viren, die im Rahmen ihres Replikationszyklus die enzymatische Aktivität einer reversen Transkriptase nutzen. Der Name „Orter“ ist die reverse Version von „Retro“ und bezieht sich auf die Virusfamilie, bei der man erstmals eine reverse Transkriptase gefunden hatte. Heute werden die fünf Familien Belpao-, Caulimo-, Meta-, Pseudo- und Retroviridae den Ortervirales zugerechnet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 66.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 84.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Weiterführende Literatur

Abschn. 18.1

  • Barré-Sinoussi, F.; Chermann, J. C.; Rey, F.; Nugeyre, M. T.; Chamaret, S.; Gruest, J.; Dauguet, C.; Axler-Blin, C.; Vézinet- Brun, F.; Rouzioux, C.; Rozenbaum, W.; Montagnier, L. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS). In: Science 220 (1983) S. 868–871.

    Article  PubMed  Google Scholar 

  • Berger EA. Finding Fusin/CXCR4, the First „2nd Receptor“ for HIV Entry. Front Immunol. 2015 Jun 8;6:283. https://doi.org/10.3389/fimmu.2015.00283. eCollection 2015. Review. PubMed PMID: 26106389; PubMed Central PMCID: PMC4459226.

  • Bieniasz, P. D. The cell biology of HIV-1 virion genesis. In: Cell Host Microbe 5 (2009) S. 550–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccuri F, Marsico S, Fiorentini S, Caruso A, Giagulli C. HIV-1 Matrix Protein p17 and its Receptors. Curr Drug Targets. 2016;17(1):23–32. Review. PubMed PMID: 26302809.

    Google Scholar 

  • Carter, C. A.; Ehrlich, L. S. Cell biology of HIV-1 infection of macrophages. In: Annu. Rev. Microbiol. 62 (2008) S. 425–443.

    Article  CAS  PubMed  Google Scholar 

  • Chen B, Chou JJ. Structure of the transmembrane domain of HIV-1 envelope glycoprotein. FEBS J. 2017 Apr;284(8):1171–1177. https://doi.org/10.1111/febs.13954. Epub 2016 Nov 20. Review. PubMed PMID: 27868386; PubMed Central PMCID: PMC5448286.

  • Cohen, M. S.; Hellmann, N.; Levy, J. A.; DeCock, K.; Lange, J. The spread, treatment, and prevention of HIV-1: evolution of a global pandemic. In: J. Clin. Invest. 118 (2008) S. 1244–1254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chande A, Cuccurullo EC, Rosa A, Ziglio S, Carpenter S, Pizzato M. S2 from equine infectious anemia virus is an infectivity factor which counteracts the retroviral inhibitors SERINC5 and SERINC3. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):13197–13202. Epub 2016 Nov 1. PubMed PMID: 27803322; PubMed Central PMCID: PMC5135340.

    Google Scholar 

  • de Jong, M. A.; Geijtenbeek, T. B. Human immunodeficiency virus-1 acquisition in genital mucosa: Langerhans cells as key-players. In: J. Intern. Med. 265 (2009) S. 18–28.

    Article  PubMed  CAS  Google Scholar 

  • Deora, A.; Ratner, L. Viral protein U (Vpu)-mediated enhancement of human immunodeficiency virus type 1 particle release depends on the rate of cellular proliferation. In: J. Virol. 75 (2001) S. 6714–6718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fackler OT. Spotlight on HIV-1 Nef: SERINC3 and SERINC5 Identified as Restriction Factors Antagonized by the Pathogenesis Factor. Viruses. 2015 Dec 19;7(12):6730–6738. https://doi.org/10.3390/v7122970. PubMed PMID: 26703715; PubMed Central PMCID: PMC4690893.

  • Ganser-Pornillos, B. K.; Yeager, M.; Sundquist, W. I. The structural biology of HIV assembly. In: Curr. Opin. Struct. Biol. 18 (2008) S. 203–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanne J, Zila V, Heilemann M, Müller B, Kräusslich HG. Super-resolved insightsinto human immunodeficiency virus biology. FEBS Lett. 2016 Jul;590(13):1858–1876. https://doi.org/10.1002/1873-3468.12186. Epub 2016 May 10. Review. PubMed PMID: 27117435.

  • Harhaj EW, Giam CZ. NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma. FEBS J. 2018 Sep;285(18):3324–3336. https://doi.org/10.1111/febs.14492. Epub 2018 May 14. Review. PubMed PMID: 29722927.

  • Heusinger E, Kirchhoff F. Primate Lentiviruses Modulate NF-κB Activity by Multiple Mechanisms to Fine-Tune Viral and Cellular Gene Expression. Front Microbiol. 2017 Feb 14;8:198. https://doi.org/10.3389/fmicb.2017.00198. eCollection 2017. Review. PubMed PMID: 28261165; PubMed Central PMCID: PMC5306280.

  • Henriet, S.; Mercenne, G.; Bernacchi, S.; Paillart, J. C.; Marquet, R. Tumultuous relationship between the human immunodeficiency virus type 1 viral infectivity factor (Vif) and the human APOBEC-3G and APOBEC-3F restriction factors. In: Microbiol. Mol. Biol. Rev. 73 (2009) S. 211–232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hosie, M. J.; Addie, D.; Belák, S.; Boucraut-Baralon, C.; Egberink, H.; Frymus, T.; Gruffydd-Jones, T.; Hartmann, K.; Lloret, A.; Lutz, H.; Marsilio, F.; Pennisi, M.G.; Radford, A. D.; Thiry, E.; Truyen, U.; Horzinek, M. C. Feline immunodeficiency. ABCD guidelines on prevention and management. In: J. Feline Med. Surg. 11 (2009) S. 575–584.

    Google Scholar 

  • Johnson, J. M.; Harrod, R.; Franchini, G. Molecular biology and pathogenesis of the human T-cell leukemia/lymphotropic virus type 1 (HTLV-1). In: Int. J. Exp. Path. 82 (2001) S. 135–147.

    Article  CAS  Google Scholar 

  • Junqueira DM, Almeida SE. HIV-1 subtype B: Traces of a pandemic. Virology. 2016 Aug;495:173–184. https://doi.org/10.1016/j.virol.2016.05.003. Epub 2016 May 23. Review. PubMed PMID: 27228177.

  • Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med. 2012 Feb;2(2):a006916. https://doi.org/10.1101/cshperspect.a006916. Review. PubMed PMID: 22355797; PubMed Central PMCID: PMC3281586.

  • Keele, B. F.; Jones, J. H.; Terio, K. A.; Estes, J. D.; Rudicell, R. S.; Wilson, M. L.; Li, Y.; Learn, G. H.; Beasley, T. M.; Schumacher-Stankey, J.; Wroblewski, E.; Mosser, A.; Raphael, J.; Kamenya, S.; Lonsdorf, E. V.; Travis, D. A.; Mlengeya, T.; Kinsel, M. J.; Else, J. G.; Silvestri, G.; Goodall, J.; Sharp, P.M.; Shaw, G. M.; Pusey, A. E.; Hahn, B. H. Increased mortality and AIDS-like immunopathology in wild chimpanzees infected with SIVcpz. In: Nature 460 (2009) S. 515–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keele, B. F.; Giorgi, E. E.; Salazar-Gonzalez, J. F.; Decker, J. M.; Pham, K. T.; Salazar, M. G.; Sun, C.; Grayson, T.; Wang, S.; Li, H.; Wei, X.; Jiang, C.; Kirchherr, J. L.; Gao, F.; Anderson, J. A.; **, L. H.; Swanstrom, R.; Tomaras, G. D.; Blattner, W. A.; Goepfert, P. A.; Kilby, J. M.; Saag, M. S.; Delwart, E. L.; Busch, M. P.; Cohen, M. S.; Montefiori, D. C.; Haynes, B. F.; Gaschen, B.; Athreya, G. S.; Lee, H. Y.; Wood, N.; Seoighe,C.; Perelson, A. S.; Bhattacharya, T.; Korber, B. T.; Hahn, B. H.; Shaw, G. M. Identification and characterization of transmitted and early founder virus envelopes in primary HIV-1 infection. In: Proc. Natl. Acad. Sci. USA 105 (2008) S. 7552–7557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan, A. S. Simian foamy virus infection in humans: prevalence and management. In: Expert Rev. Anti Infect. Ther. 7 (2009) S. 569–580.

    Article  CAS  PubMed  Google Scholar 

  • Khan AS, Bodem J, Buseyne F, Gessain A, Johnson W, Kuhn JH, Kuzmak J, Lindemann D, Linial ML, Löchelt M, Materniak-Kornas M, Soares MA, Switzer WM. Spumaretroviruses: Updated taxonomy and nomenclature. Virology. 2018 Mar;516:158–164. https://doi.org/10.1016/j.virol.2017.12.035. Review. PubMed PMID: 29407373.

  • Khan, M. A.; Aberham, C.; Kao, S.; Akari, H.; Gorelick, R.; Bour, S.; Strebel, K. Human immunodeficiency virus type 1 Vif protein is packaged into the nucleoprotein complex through an interaction with viral genomic RNA. In: J. Virol. 75 (2001) S. 7252–7265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirchhoff, F.; Schindler, M.; Specht, A.; Arhel, N.; Münch, J. Role of Nef in primate lentiviral immunopathogenesis. In: Cell Mol. Life Sci. 65 (2008) S. 2621–2636.

    Article  CAS  PubMed  Google Scholar 

  • Krupovic M, Blomberg J, Coffin JM, Dasgupta I, Fan H, Geering AD, Gifford R, Harrach B, Hull R, Johnson W, Kreuze JF, Lindemann D, Llorens C, Lockhart B, Mayer J, Muller E, Olszewski NE, Pappu HR, Pooggin MM, Richert-Pöggeler KR, Sabanadzovic S, Sanfaçon H, Schoelz JE, Seal S, Stavolone L, Stoye JP, Teycheney PY, Tristem M, Koonin EV, Kuhn JH. Ortervirales: New Virus Order Unifying Five Families of Reverse-Transcribing Viruses. J Virol. 2018 May 29;92(12). pii: e00515–18. https://doi.org/10.1128/jvi.00515-18. Print 2018 Jun 15. PubMed PMID: 29618642; PubMed Central PMCID: PMC5974489.

  • Kulkarni A, Bangham CRM. HTLV-1: Regulating the Balance Between Proviral Latency and Reactivation. Front Microbiol. 2018 Mar 19;9:449. https://doi.org/10.3389/fmicb.2018.00449. eCollection 2018. Review. PubMed PMID: 29615991; PubMed Central PMCID: PMC5867303.

  • Levy, J. A. HIV pathogenesis: 25 years of progress and persistent challenges. In: AIDS 23 (2009) S. 147–160.

    Article  PubMed  Google Scholar 

  • Le Grice SF. Human immunodeficiency virus reverse transcriptase: 25 years of research, drug discovery, and promise. J Biol Chem. 2012 Nov 30;287(49):40850–40857. https://doi.org/10.1074/jbc.r112.389056. Epub 2012 Oct 5. Review. PubMed PMID: 23043108; PubMed Central PMCID: PMC3510788.

  • Lippincott-Schwartz J, Freed EO, van Engelenburg SB. A Consensus View of ESCRT-Mediated Human Immunodeficiency Virus Type 1 Abscission. Annu Rev Virol. 2017 Sep 29;4(1):309–325. https://doi.org/10.1146/annurev-virology-101416-041840. Epub 2017 Jul 17. Review. PubMed PMID: 28715971.

  • Lopez-Galindez C, Pernas M, Casado C, Olivares I, Lorenzo-Redondo R. Elite controllers and lessons learned for HIV-1 cure. Curr Opin Virol. 2019 Jun 25;38:31–36. https://doi.org/10.1016/j.coviro.2019.05.010. [Epub ahead of print] Review. PubMed PMID: 31252326.

  • Mack, M.; Kleinschmidt, A.; Brühl, H.; Klier, C.; Nelson, P. J.; Cihak, J.; Plachy, J.; Stangassinger, M.; Erfle, V.; Schlöndorff, D. Transfer of chemokine receptor CCR5 between cells by membrane derived microparticles: A mechanism for cellular immunodeficiency virus 1 infection. In: Nature Medicine 6 (2000) S. 769–775.

    Article  CAS  PubMed  Google Scholar 

  • Maeda, N.; Fan, H.; Yoshikai, Y. Oncogenesis by retroviruses: old and newn paradigms. In: Rev. Med. Virol. 18 (2008) S. 387–405.

    Article  CAS  PubMed  Google Scholar 

  • Martinez MP, Al-Saleem J, Green PL. Comparative virology of HTLV-1 and HTLV-2. Retrovirology. 2019 Aug 7;16(1):21. https://doi.org/10.1186/s12977-019-0483-0. Review. PubMed PMID: 31391116; PubMed Central PMCID: PMC6686503.

  • Merk A, Subramaniam S. HIV-1 envelope glycoprotein structure. Curr Opin Struct Biol. 2013 Apr;23(2):268–276. https://doi.org/10.1016/j.sbi.2013.03.007. Epub 2013 Apr 18. Review. PubMed PMID: 23602427; PubMed Central PMCID: PMC3676719.

  • Münch, J.; Rücker, E.; Ständker, L.; Adermann, K.; Goffinet, C.; Schindler, M.; Wildum, S.; Chinnadurai, R.; Rajan, D.; Specht, A.; Giménez-Gallego, G.; Sánchez, P. C.; Fowler, D. M.; Koulov, A.; Kelly, J. W.; Mothes, W.; Grivel, J. C.; Margolis, L.; Keppler, O. T.; Forssmann, W. G.; Kirchhoff, F. Semenderived amyloid fibrils drastically enhance HIV infection. In: Cell 131 (2007) S. 1059–1071.

    Article  PubMed  CAS  Google Scholar 

  • Peeters M, Jung M, Ayouba A. The origin and molecular epidemiology of HIV. Expert Rev Anti Infect Ther. 2013 Sep;11(9):885–896. https://doi.org/10.1586/14787210.2013.825443. Epub 2013 Sep 9. Review. PubMed PMID: 24011334.

  • Pierson, T.; McArthur, J.; Siliciano, R. F. Reservoirs for HIV-1: Mechansims for viral persistence in the presence of antiviral immune response and antiviral therapy. In: Annu. Rev. Immunol. 18 (2000) S. 665–708.

    Article  CAS  PubMed  Google Scholar 

  • Poignard, P.; Saphire, E. O.; Parren, P. W. H. I.; Burton, D. R. Gp120: Biological aspects of structural features. In: Annu. Rev. Immunol. 19 (2001) S. 253–274.

    Article  CAS  PubMed  Google Scholar 

  • Pornillos O, Ganser-Pornillos BK. Maturation of retroviruses. Curr Opin Virol. 2019 Jun;36:47–55. https://doi.org/10.1016/j.coviro.2019.05.004. Epub 2019 Jun 8. Review. PubMed PMID: 31185449.

  • Samson, M.; Libert, F.; Doranz, B. J.; Rucker, J.; Liesnard, C.; Farber, C.-M.; Saragosti, S.; Lapouméroulie, C.; Cognaux, J.; Forceille, C.; Muyldermans, G.; Verhofstede, C.; Burtonboy, G.; Georges, M.; Imai, T.; Rana, S.; Yi, Y.; Smyth, R. J.; Collman, R. G.; Doms, R. W.; Vassart, G.; Parmentier, M. Resistance to HIV-1 infection in caucasian individuals bearing mutant allels of the CCR5-chemokine receptor gene. In: Nature 382 (1996) S. 722–725.

    Article  CAS  PubMed  Google Scholar 

  • Sarafianos, S. G.; Marchand, B.; Das, K.; Himmel, D. M.; Parniak, M. A.; Hughes, S. H.; Arnold, E. Structure and function of HIV-1 reverse transcriptase: molecular mechanisms of polymerization and inhibition. In: J. Mol. Biol. 385 (2009) S. 693–713.

    Article  CAS  PubMed  Google Scholar 

  • Schöneberg J, Lee IH, Iwasa JH, Hurley JH. Reverse-topology membrane scission by the ESCRT proteins. Nat Rev Mol Cell Biol. 2017 Jan;18(1):5–17. https://doi.org/10.1038/nrm.2016.121. Epub 2016 Oct 5. Review. PubMed PMID: 27703243; PubMed Central PMCID: PMC5198518.

  • Shaik MM, Peng H, Lu J, Rits-Volloch S, Xu C, Liao M, Chen B. Structural basis of coreceptor recognition by HIV-1 envelope spike. Nature. 2018 Dec 12. https://doi.org/10.1038/s41586-018-0804-9. [Epub ahead of print] PubMed PMID: 30542158.

  • Shuh, M.; Beilke, M. The human T-cell leukemia virus type 1 (HTLV-1): new insights into the clinical aspects and molecular pathogenesis of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM). In: Microsc. Res. Tech. 68 (2005) S. 176–196.

    Article  CAS  PubMed  Google Scholar 

  • Sundquist WI, Kräusslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med. 2012 Jul;2(7):a006924. https://doi.org/10.1101/cshperspect.a006924. Review. Erratum in: Cold Spring Harb Perspect Med.2012 Aug;2(8). https://doi.org/10.1101/cshperspect.a015420. PubMed PMID: 22762019; PubMed Central PMCID: PMC3385941.

  • Stewart-Jones GB, Soto C, Lemmin T, Chuang GY, Druz A, Kong R, Thomas PV, Wagh K, Zhou T, Behrens AJ, Bylund T, Choi CW, Davison JR, Georgiev IS, Joyce MG, Kwon YD, Pancera M, Taft J, Yang Y, Zhang B, Shivatare SS, Shivatare VS, Lee CC, Wu CY, Bewley CA, Burton DR, Koff WC, Connors M, Crispin M, Baxa U, Korber BT, Wong CH, Mascola JR, Kwong PD. Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell. 2016 May 5;165(4):813–826. https://doi.org/10.1016/j.cell.2016.04.010. Epub 2016 Apr 21. PubMed PMID: 27114034; PubMed Central PMCID: PMC5543418.

  • Tamamis P, Floudas CA. Molecular recognition of CCR5 by an HIV-1 gp120 V3 loop. PLoS One. 2014 Apr 24;9(4):e95767. https://doi.org/10.1371/journal.pone.0095767. eCollection 2014. PubMed PMID: 24763408; PubMed Central PMCID: PMC3999033.

  • Tamamis P, Floudas CA. Molecular recognition of CXCR4 by a dual tropic HIV-1 gp120 V3 loop. Biophys J. 2013 Sep 17;105(6):1502–1514. https://doi.org/10.1016/j.bpj.2013.07.049. PubMed PMID: 24048002; PubMed Central PMCID: PMC3785887.

  • Thomas, J. A.; Gorelick, R. J. Nucleocapsid protein function in early infection processes. In: Virus Res. 134 (2008) S. 39–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usami Y, Wu Y, Göttlinger HG. SERINC3 and SERINC5 restrict HIV-1 infectivity and are counteracted by Nef. Nature. 2015 Oct 8;526(7572):218–223. https://doi.org/10.1038/nature15400. Epub 2015 Sep 30. PubMed PMID: 26416733; PubMed Central PMCID: PMC4600458.

  • Visseaux B, Damond F, Matheron S, Descamps D, Charpentier C. Hiv-2 molecular epidemiology. Infect Genet Evol. 2016 Dec;46:233–240. https://doi.org/10.1016/j.meegid.2016.08.010. Epub 2016 Aug 12. Review. Erratum in: Infect Genet Evol. 2018 Jan 4. PubMed PMID: 27530215.

  • Ward AB, Wilson IA. The HIV-1 envelope glycoprotein structure: nailing down a moving target. Immunol Rev. 2017 Jan;275(1):21–32. https://doi.org/10.1111/imr.12507. Review. PubMed PMID: 28133813; PubMed Central PMCID: PMC5300090.

  • Ward AB, Wilson IA. Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends Biochem Sci. 2015 Feb;40(2):101–117. https://doi.org/10.1016/j.tibs.2014.12.006. Epub 2015 Jan 16. Review. PubMed PMID: 25600289; PubMed Central PMCID: PMC4310573.

  • Yoshida, M. Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. In. Annu. Rev. Immunol. 19 (2001) S. 475–496.

    Article  CAS  Google Scholar 

  • Zennou, V. HIV-1 genome nuclear import is mediated by a central DNA flap. In: Cell 101 (2000) S. 173–185.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Han GW, Abagyan R, Wu B, Stevens RC, Cherezov V, Kufareva I, Handel TM. Structure of CC Chemokine Receptor 5 with a Potent Chemokine Antagonist Reveals Mechanisms of Chemokine Recognition and Molecular Mimicry by HIV. Immunity. 2017 Jun 20;46(6):1005–1017.e5. https://doi.org/10.1016/j.immuni.2017.05.002. PubMed PMID: 28636951; PubMed Central PMCID: PMC5572563.

  • Zhu, P.; Liu, J.; Bess, J. Jr.; Chertova, E.; Lifson, J. D.; Grisé, H.; Ofek, G. A.; Taylor, K. A.; Roux, K. H. Distribution and threedimensional structure of AIDS virus envelope spikes. In: Nature 15 (2006) S. 847–852.

    Article  CAS  Google Scholar 

Abschn. 18.2

  • Been, M. D. HDV ribozymes. In: Curr. Top. Microbiol. Immunol. 307 (2006) S. 47–65.

    CAS  PubMed  Google Scholar 

  • Block, T. M.; Guo, H.; Guo J. T. Molecular virology of hepatitis B virus for clinicians. In: Clin. Liver Dis. 11 (2007) S. 685–706.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bremer CM, Sominskaya I, Skrastina D, Pumpens P, El Wahed AA, Beutling U, Frank R, Fritz HJ, Hunsmann G, Gerlich WH, Glebe D. N-terminal myristoylation-dependent masking of neutralizing epitopes in the preS1 attachment site of hepatitis B virus. J Hepatol. 2011 Jul;55(1):29–37. https://doi.org/10.1016/j.jhep.2010.10.019. Epub 2010 Nov 28. PubMed PMID: 21145866.

  • Brenner, K. M.; Urban, S.; Schaller, H. Carboxypeptidase D (gp180), a golgi-resident protein, functions in the attachment and entry of avian hepatitis b viruses. In: J. Virol. 72 (1998) S. 8908–8104.

    Google Scholar 

  • Dandri M, Petersen J. Mechanism of Hepatitis B Virus Persistence in Hepatocytes and Its Carcinogenic Potential. Clin Infect Dis. 2016 Jun 1;62 Suppl 4:S. 281–288. https://doi.org/10.1093/cid/ciw023. Review. PubMed PMID: 27190317; PubMed Central PMCID: PMC4889895.

  • Desmond, C. P.; Bartholomeusz, A.; Gaudieri, S.; Revill, P. A.; Lewin, S. R. A systematic review of T-cell epitopes in hepatitis B virus: identification, genotypic variation and relevance to antiviral therapeutics. In: Antivir. Ther. 13 (2008) S. 161–175.

    Article  CAS  PubMed  Google Scholar 

  • Dienstag, J. L. Hepatitis B virus infection. In: N. Engl. J. Med. 359 (2008) S. 1486–1500.

    Article  CAS  PubMed  Google Scholar 

  • Drexler JF, Geipel A, König A, Corman VM, van Riel D, Leijten LM, Bremer CM, Rasche A, Cottontail VM, Maganga GD, Schlegel M, Müller MA, Adam A, Klose SM, Carneiro AJ, Stöcker A, Franke CR, Gloza-Rausch F, Geyer J, Annan A, Adu-Sarkodie Y, Oppong S, Binger T, Vallo P, Tschapka M, Ulrich RG, Gerlich WH, Leroy E, Kuiken T, Glebe D, Drosten C. Bats carry pathogenic hepadnaviruses antigenically related to hepatitis B virus and capable of infecting human hepatocytes. Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):16151–16156. https://doi.org/10.1073/pnas.1308049110. Epub 2013 Sep 16. PubMed PMID: 24043818; PubMed Central PMCID: PMC3791787.

  • Eller C, Heydmann L, Colpitts CC, Verrier ER, Schuster C, Baumert TF. The functional role of sodium taurocholate cotransporting polypeptide NTCP in the life cycle of hepatitis B, C and D viruses. Cell Mol Life Sci. 2018 Nov;75(21):3895–3905. https://doi.org/10.1007/s00018-018-2892-y. Epub 2018 Aug 10. Review. PubMed PMID: 30097692.

  • Gerlich, W. Hepatitis B surface proteins. In: J. Hepatol. 13 (1991) S. 90–92.

    Article  Google Scholar 

  • Gerlich WH. Prophylactic vaccination against hepatitis B: achievements, challenges and perspectives. Med Microbiol Immunol. 2015 Feb;204(1):39–55. https://doi.org/10.1007/s00430-014-0373-y. Epub 2014 Dec 19. Review. PubMed PMID: 25523195.

  • Gerlich WH. Medical virology of hepatitis B: how it began and where we are now. Virol J. 2013 Jul 20;10:239. https://doi.org/10.1186/1743-422x-10-239. Review. PubMed PMID: 23870415; PubMed Central PMCID: PMC3729363.

  • Glebe, D.; Urban, S. Viral and cellular determinants involved in hepadnaviral entry. In: World J. Gastroenterol. 13 (2007) S. 22–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gordien, E.; Rosmordic, O.; Peltekian, C.; Garreau, F.; Bréchot, C.; Kremsdorf, D. Inhibition of hepatitis B virus replication by the interferon-inducible MxA protein. In: J. Virol. 75 (2001) S. 2684–2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han, J.; Yoo, H. Y.; Choi, B. H.; Rho, H. M. Selective transcriptional regulations in the human liver cell by hepatitis B viral X protein. In: Biochem. Biophys. Res. Commun. 272 (2000) S. 525–530.

    Article  CAS  PubMed  Google Scholar 

  • Hetzel U, Szirovicza L, Smura T, et al. Identification of a Novel Deltavirus in Boa Constrictors. mBio. 2019;10(2):e00014–19. Published 2019 Apr 2. https://doi.org/10.1128/mbio.00014-19

  • Huang, W. H.; Yung, B. Y.; Syu, W. J.; Lee, Y. H. The nucleolar phosphoprotein B23 interacts with hepatitis delta antigens and modulates the hepatitis delta RNA replication. In: J. Biol. Chem. 276 (2001) S. 25166–25175.

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Lee SA, Kim BJ. X region mutations of hepatitis B virus related to clinical severity. World J Gastroenterol. 2016 Jun 28;22(24):5467–5478. https://doi.org/10.3748/wjg.v22.i24.5467. Review. PubMed PMID: 27350725; PubMed Central PMCID: PMC4917607.

  • Li W. The hepatitis B virus receptor. Annu Rev Cell Dev Biol. 2015;31:125–147. https://doi.org/10.1146/annurev-cellbio-100814-125241. Epub 2015 Oct 2. Review. PubMed PMID: 26436705.

  • Li W, Urban S. Entry of hepatitis B and hepatitis D virus into hepatocytes: Basic insights and clinical implications. J Hepatol. 2016 Apr;64(1 Suppl):S32–S40. https://doi.org/10.1016/j.jhep.2016.02.011. Review. PubMed PMID: 27084034.

  • Liu S, Koh SS, Lee CG. Hepatitis B Virus X Protein and Hepatocarcinogenesis. Int J Mol Sci. 2016 Jun 14;17(6). pii: E940. https://doi.org/10.3390/ijms17060940. Review. PubMed PMID: 27314335; PubMed Central PMCID: PMC4926473.

  • Magnius L, Taylor J, Mason WS, et al. ICTV Virus Taxonomy Profile: Deltavirus. J Gen Virol. 2018;99(12):1565–1566. https://doi.org/10.1099/jgv.0.001150

    Article  CAS  PubMed  Google Scholar 

  • Müller SF, König A, Döring B, Glebe D, Geyer J. Characterisation of the hepatitis B virus cross-species transmission pattern via Na+/taurocholate co-transporting polypeptides from 11 New World and Old World primate species. PLoS One. 2018 Jun 18;13(6):e0199200. https://doi.org/10.1371/journal.pone.0199200. eCollection 2018. PubMed PMID: 29912972; PubMed Central PMCID: PMC6005513.

  • Mühlemann B, Jones TC, Damgaard PB, Allentoft ME, Shevnina I, Logvin A, Usmanova E, Panyushkina IP, Boldgiv B, Bazartseren T, Tashbaeva K, Merz V, Lau N, Smrčka V, Voyakin D, Kitov E, Epimakhov A, Pokutta D, Vicze M, Price TD, Moiseyev V, Hansen AJ, Orlando L, Rasmussen S, Sikora M, Vinner L, Osterhaus ADME, Smith DJ, Glebe D, Fouchier RAM, Drosten C, Sjögren KG, Kristiansen K, Willerslev E. Ancient hepatitis B viruses from the Bronze Age to the Medieval period. Nature. 2018 May;557(7705):418–423. https://doi.org/10.1038/s41586-018-0097-z. Epub 2018 May 9. Erratum in: Nature. 2018 Oct;562(7726):E4. PubMed PMID: 29743673.

  • Murakami, S. Hepatitis B virus X protein: structure, function and biology. In: Intervirology 42 (1999) S. 81–99.

    Article  CAS  PubMed  Google Scholar 

  • Nassal, M. Hepatitis B viruses: reverse transcription a different way. In: Virus Res. 134 (2008) S. 35–49.

    Article  CAS  Google Scholar 

  • Nassal M. Hepatitis B viruses: reverse transcription a different way. Virus Res. 2008 Jun;134(1–2):235–249. https://doi.org/10.1016/j.virusres.2007.12.024. Epub 2008 Mar 12. Review. PubMed PMID: 18339439.

  • Ni Y, Lempp FA, Mehrle S, Nkongolo S, Kaufman C, Fälth M, Stindt J, Königer C, Nassal M, Kubitz R, Sültmann H, Urban S. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 2014 Apr;146(4):1070–1083. https://doi.org/10.1053/j.gastro.2013.12.024. Epub 2013 Dec 19. PubMed PMID: 24361467.

  • Polson, A. G.; Bass, B. L.; Casey, J. L. RNA editing of hepatitis delta virus antigenome by dsRNA-adenosine deaminase. In: Nature 380 (1996) S. 454–456.

    Article  CAS  PubMed  Google Scholar 

  • Rizzetto, M. Hepatitis D: Thirty years after. In: J. Hepatol. 50 (2009) S. 1043–1050.

    Article  CAS  PubMed  Google Scholar 

  • Rizzetto M. Targeting Hepatitis D. Semin Liver Dis. 2018 Feb;38(1):66–72. https://doi.org/10.1055/s-0037-1621711. Epub 2018 Feb 22. Review. PubMed PMID: 29471567.

  • Salehi-Ashtiani, K.; Lupták, A.; Litovchick, A.; Szostak, J. W. A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. In: Science 313 (2006) S. 1788–1792.

    Article  CAS  PubMed  Google Scholar 

  • Schaefer S. Hepatitis B virus taxonomy and hepatitis B virus genotypes. In: World J. Gastroenterol. 13 (2007) S. 14–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schildgen, O.; Sirma, H.; Funk, A.; Olotu, C.; Wend, U. C.; Hartmann, H.; Helm, M.; Rockstroh, J. K.; Willems, W. R.; Will, H.; Gerlich, W. H. Variant of hepatitis B virus with primary resistance to adefovir. In: N. Engl. J. Med. 354 (2006) S. 1807–1812.

    Article  CAS  PubMed  Google Scholar 

  • Schreiner S, Nassal M. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation-and Beyond? Viruses. 2017 May 22;9(5). pii: E125. https://doi.org/10.3390/v9050125. Review. PubMed PMID: 28531167; PubMed Central PMCID: PMC5454437.

  • Sekiba K, Otsuka M, Ohno M, Yamagami M, Kishikawa T, Suzuki T, Ishibashi R, Seimiya T, Tanaka E, Koike K. Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA. World J Gastroenterol. 2018 Jun 7;24(21):2261–2268. https://doi.org/10.3748/wjg.v24.i21.2261. Review. PubMed PMID: 29881235; PubMed Central PMCID: PMC5989240.

  • Stahl, M.; Beck, J.; Nassal, M. Chaperones activate hepadnavirus reverse transcriptase by transiently exposing a C-proximal region in the terminal protein domain that contributes to epsilon RNA binding. In: J. Virol. 81 (2007) S. 13354–13364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suffner S, Gerstenberg N, Patra M, Ruibal P, Orabi A, Schindler M, Bruss V. Domains of the Hepatitis B Virus Small Surface Protein S Mediating Oligomerization. J Virol. 2018 May 14;92(11). pii: e02232–17. https://doi.org/10.1128/jvi.02232-17. Print 2018 Jun 1. PubMed PMID: 29540592; PubMed CentralPMCID: PMC5952150.

  • Sureau C, Negro F. The hepatitis delta virus: Replication and pathogenesis. J Hepatol. 2016 Apr;64(1 Suppl):S102–S116. https://doi.org/10.1016/j.jhep.2016.02.013. Review. PubMed PMID: 27084031.

  • Tsai KN, Kuo CF, Ou JJ. Mechanisms of Hepatitis B Virus Persistence. Trends Microbiol. 2018 Jan;26(1):33–42. https://doi.org/10.1016/j.tim.2017.07.006. Epub 2017 Aug 16. Review. PubMed PMID: 28823759; PubMed Central PMCID: PMC5741523.

  • Tong S, Revill P. Overview of hepatitis B viral replication and genetic variability. J Hepatol. 2016 Apr;64(1 Suppl):S4–S16. https://doi.org/10.1016/j.jhep.2016.01.027. Review. PubMed PMID: 27084035; PubMed Central PMCID: PMC4834849.

  • Urban, S.; Urban, S.; Fischer, K. P.; Tyrell, D. L. Efficient pyrophosphorolysis by a hepatitis B virus polymerase may be a primer-unblocking mechanism. In: Proc. Natl. Acad. Sci. USA 98 (2001) S. 4984–4989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, D.; Pearlberg, J.; Liu, Y. T.; Ganem, D. Deleterious effects of hepatitis delta replication on host cell proliferation. In: J. Virol. 75 (2001) S. 3600–3604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wentz, M. J.; Becker, S. A.; Slagle, B. L. Dissociation of DDB1-binding and transactivation properties of the hepatitis B virus X protein. In: Virus Res. 68 (2000) S. 87–92.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi, Y.; Filipovska, J.; Yano, K.; Furuya, A.; Inukai, N.; Narita, T.; Wada, T.; Sugimoto, S.; Konarska, M. M.; Handa, H. Stimulation of RNA polymerase II elongation by hepatitis delta antigen. In: Science 293 (2001) S. 124–127.

    Article  CAS  PubMed  Google Scholar 

  • Yuen, M. F.; Lai, C. L. Hepatitis B virus genotypes: natural history and implications for treatment. In: Expert Rev. Gastroenterol. Hepatol. 1 (2007) S. 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Zanetti, A. R.; Van Damme, P.; Shouval, D. The global impact of vaccination against hepatitis B: a historical overview. In: Vaccine 26 (2008) S. 6266–6273.

    Article  PubMed  Google Scholar 

  • Zang, W.-Q.; Yen, T. S. B. Distinct export pathways utilized by the hepatitis B virus posttranscriptional regulatory element. In: Virology 259 (1999) S. 299–304.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Modrow .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Modrow, S., Truyen, U., Schätzl, H. (2021). RNA- und DNA-Viren mit reverser Transkription. In: Molekulare Virologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61781-6_18

Download citation

Publish with us

Policies and ethics

Navigation