Viren mit einzelsträngigem RNA-Genom in Plusstrangorientierung

  • Chapter
  • First Online:
Molekulare Virologie

Zusammenfassung

Heute sind neun Virusfamilien bekannt, deren Vertreter eine einzelsträngige RNA in Plusstrangorientierung besitzen und in der Lage sind, Infektionserkrankungen in Menschen oder Wirbeltieren zu verursachen: Die Familie der Picornaviridae wird zusammen mit den Dicistro-, Ifla-, Polycipi- und Secoviridae in die Ordnung der Picornavirales gruppiert. Die Caliciviridae, Astroviridae und Hepeviridae wurden bisher in keine Ordnung eingruppiert.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

Abschnitt 14.1

  • Abzug, M. J. The enteroviruses: an emerging infectious disease? The real, the speculative and the really speculative. In: Adv. Exp. Med. Biol. 609 (2008) S. 1–15.

    Article  PubMed  Google Scholar 

  • Allen DW, Kim KW, Rawlinson WD, Craig ME. Maternal virus infections in pregnancy and type 1 diabetes in their offspring: Systematic review and meta-analysis of observational studies. Rev Med Virol. 2018 Mar 22:e1974. doi: https://dx.doi.org/10.1002/rmv.1974. [Epub ahead of print] Review. PubMed PMID: 29569297.

  • Baggen J, Jan Thibaut H, Strating JRPM, van Kuppeveld FJM. The life cycle of non-polio enteroviruses and how to target it. Nat Rev Microbiol. 2018 Apr 6. doi: https://dx.doi.org/10.1038/s41579-018-0005-4. [Epub ahead of print] Review. PubMed PMID: 29626210.

  • Baumgarte, S.; de Souza Luna, L. K.; Grywna, K.; Panning, M.; Drexler, J. F.; Karsten, C.; Huppertz, H. I.; Drosten, C. Prevalence, types, and RNA concentrations of human parechoviruses, including a sixth parechovirus type, in stool samples from patients with acute enteritis. In: J. Clin. Microbiol. 46 (2008) S. 242–248.

    Article  CAS  PubMed  Google Scholar 

  • Bible, J. M.; Pantelidis, P.; Chan, P. K.; Tong, C. Y. Genetic evolution of enterovirus 71: epidemiological and pathological implications. In: Rev. Med. Virol. 17 (2007) S. 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Bowers JR, Readler JM, Sharma P, Excoffon KJDA. Poliovirus Receptor: More thana simple viral receptor. Virus Res. 2017 Oct 15;242:1–6. doi: https://dx.doi.org/10.1016/j.virusres.2017.09.001. Epub 2017 Sep 8. Review. PubMed PMID: 28870470; PubMed Central PMCID: PMC5650920.

  • Carocci M, Bakkali-Kassimi L. The encephalomyocarditis virus. Virulence. 2012 Jul 1;3(4):351-67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chapman, N. M.; Kim, K. S. Persistent coxsackievirus infection: enterovirus persistence in chronic myocarditis and dilated cardiomyopathy. In: Curr. Top. Microbiol. Immunol. 323 (2008) S. 275–292.

    CAS  PubMed  Google Scholar 

  • Coetzer, J. A. W.; Thomson, G. R.; Tustin, R. C. (Hrsg.) Infectious Diseases of Livestock with special reference to Southern Africa. Oxford University Press 2004.

    Google Scholar 

  • Cristina, J.; Costa-Mattioli, M. Genetic variability and molecular evolution of Hepatitis-A virus. In: Virus Res. 127 (2007) S. 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Dreschers, S.; Dumitru, C. A.; Adams, C.; Gulbins, E. The cold case: are rhinoviruses perfectly adapted pathogens? In: Cell. Mol. Life Sci. 64 (2007) S. 181–191.

    Article  CAS  PubMed  Google Scholar 

  • Drexler JF, Corman VM, Lukashev AN, van den Brand JM, Gmyl AP, Brünink S, Rasche A, Seggewiβ N, Feng H, Leijten LM, Vallo P, Kuiken T, Dotzauer A, Ulrich RG, Lemon SM, Drosten C; Hepatovirus Ecology Consortium. Evolutionary origins of hepatitis A virus in small mammals. Proc Natl Acad Sci U S A. 2015 Dec 8;112(49):15190–5. doi: https://dx.doi.org/10.1073/pnas.1516992112. Epub 2015 Nov 2. PubMed PMID: 26575627; PubMed Central PMCID: PMC4679062.

  • Enders, J. F.; Weller, T. H.; Robbins, F. C. Cultivation of the Lansing strain of poliomyelitis virus in cultures of various human embryonic tissues. In: Science 190 (1949) S. 85–87.

    Article  Google Scholar 

  • Feng Z, Hensley L, McKnight KL, Hu F, Madden V, ** L, Jeong SH, Walker C, Lanford RE, Lemon SM. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature. 2013 Apr 18;496(7445):367–71. doi: https://dx.doi.org/10.1038/nature12029. Epub 2013 Mar 31. PubMed PMID: 23542590; PubMed Central PMCID: PMC3631468.

  • Fensterl, V.; Grotheer, D.; Berk, I.; Schlemminger, S.; Vallbracht, A.; Dotzauer, A. Hepatitis-A virus suppresses RIG-I-mediated IRF-3 activation to block induction of beta interferon. In: J. Virol. 79 (2005) S. 10968–10977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garriga D, Pickl-Herk A, Luque D, Wruss J, Castón JR, Blaas D, Verdaguer N. Insights into minor group rhinovirus uncoating: the X-ray structure of the HRV2 empty capsid. PLoS Pathog. 2012 Jan;8(1):e1002473. doi: https://dx.doi.org/10.1371/journal.ppat.1002473. Epub 2012 Jan 5. PubMed PMID: 22241997; PubMed Central PMCID: PMC3252380.

  • Gibbens, J. C.; Sharpe, C. E.; Wilesmith, J. W.; Mansley, L. M.; Michalopoulou, E.; Ryan, J. B. M.; Hudson, M. Descriptive epidemiology of the 2001 foot-and-mouth disease epidemic in Great Britain: the first five months. In: The Veterinary Record (Vet. Rec.) 149 (2001). S. 729–743.

    Google Scholar 

  • Grubman, M. J.; Moraes, M. P.; Diaz-San Segundo, F.; Pena, L.; de los Santos, T. Evading the host immune response: how foot-and-mouth disease virus has become an effective pathogen. In: FEMS Immunol. Med. Microbiol. 53 (2008) S. 8–17.

    Google Scholar 

  • Hirai-Yuki A, Hensley L, Whitmire JK, Lemon SM. Biliary Secretion of Quasi-Enveloped Human Hepatitis A Virus. MBio. 2016 Dec 6;7(6). pii: e01998–16. doi: https://dx.doi.org/10.1128/mBio.01998-16. PubMed PMID: 27923925; PubMed Central PMCID:PMC5142623.

  • Hogle, J. M.; Chow, M.; Filman, D. J. Three-dimensional structure of poliovirus at 2.9 A resolution. In: Science 229 (1985) S. 1358–1363.

    Google Scholar 

  • Hovi, T. Inactivated poliovirus vaccine and the final stages of poliovirus eradication. In: Vaccine 19 (2001) S. 2268–2272.

    Article  CAS  PubMed  Google Scholar 

  • Jiang P, Liu Y, Ma HC, Paul AV, Wimmer E. Picornavirus morphogenesis. Microbiol Mol Biol Rev. 2014 Sep;78(3):418-37. doi: https://dx.doi.org/10.1128/MMBR.00012-14. Review. PubMed PMID: 25184560; PubMed Central PMCID: PMC4187686.

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson AG, Grosely R, Petrov AN, Puglisi JD. Dynamics of IRES-mediated translation. Philos Trans R Soc Lond B Biol Sci. 2017 Mar 19;372(1716). pii: 20160177. doi: https://dx.doi.org/10.1098/rstb.2016.0177. Review. PubMed PMID: 28138065; PubMed Central PMCID: PMC5311923.

  • Joki-Korpela, P.; Hyypiä, T. Parechoviruses, a novel group of human picornaviruses. In: Ann. Med. 33 (2001) S. 466–471.

    Article  CAS  PubMed  Google Scholar 

  • Kempf BJ, Barton DJ. Picornavirus RNA polyadenylation by 3D(pol), the viral RNA-dependent RNA polymerase. Virus Res. 2015 Aug 3;206:3–11. doi: https://dx.doi.org/10.1016/j.virusres.2014.12.030. Epub 2015 Jan 3. Review. PubMed PMID: 25559071; PubMed Central PMCID: PMC4801031.

  • Landsteiner, K.; Popper, E. Übertragung der Poliomyelitis acuta auf Affen. In: Z. Immunitätsforschung Orig. 2 (1909) S. 377–390.

    Google Scholar 

  • Lemon SM, Ott JJ, Van Damme P, Shouval D. Type A viral hepatitis: A summary and update on the molecular virology, epidemiology, pathogenesis and prevention. J Hepatol. 2017 Sep 5. pii: S0168–8278(17)32278-X. doi https://dx.doi.org/10.1016/j.jhep.2017.08.034. [Epub ahead of print] Review. PubMed PMID: 28887164.

  • Leppek K, Das R, Barna M. Functional 5' UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat Rev Mol Cell Biol. 2018 Mar;19(3):158–174. doi: https://dx.doi.org/10.1038/nrm.2017.103. Epub 2017 Nov 22. Review. PubMed PMID: 29165424; PubMed Central PMCID: PMC5820134.

  • Liu Y, Wimmer E, Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta. 2009 Sep-Oct;1789(9–10):495–517. doi: https://dx.doi.org/10.1016/j.bbagrm.2009.09.007. Epub 2009 Sep 23. Review. PubMed PMID: 19781674; PubMed Central PMCID: PMC2783963.

  • Lukashev, A. N. Role of recombination in evolution of enteroviruses. In: Rev. Med. Virol. 15 (2005) S. 157–167.

    Article  CAS  PubMed  Google Scholar 

  • Mailliot J, Martin F. Viral internal ribosomal entry sites: four classes for one goal. Wiley Interdiscip Rev RNA. 2018 Mar;9(2). doi: https://dx.doi.org/10.1002/wrna.1458. Epub 2017 Nov 29. Review. PubMed PMID: 29193740.

  • Martin, A.; Lemon, S. M. Hepatitis-A virus: from discovery to vaccines. In: Hepatology 43 (2006) :S. 164–172.

    Google Scholar 

  • Messacar K, Asturias EJ, Hixon AM, Van Leer-Buter C, Niesters HGM, Tyler KL, Abzug MJ, Dominguez SR. Enterovirus D68 and acute flaccid myelitis-evaluating the evidence for causality. Lancet Infect Dis. 2018 Feb 23. pii: S1473–3099(18)30094-X. doi: https://dx.doi.org/10.1016/S1473-3099(18)30094-X. [Epub ahead of print] Review. PubMed PMID: 29482893.

  • Morace, G.; Kusov. Y.; Dzagurov. G.; Beneduce, F.; Gauss-Muller, V. The unique role of domain 2A of the Hepatitis-A virus precursor polypeptide P1–2A in viral morphogenesis. In: BMB Rep. 41 (2008) S. 678–683.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, S.; Wimmer, E.; Cello, J. Poliovirus and poliomyelitis: a tale of guts, brains, and an accidental event. In: Virus Res. 111 (2005) S. 175–193.

    Article  CAS  PubMed  Google Scholar 

  • Niklasson, B.; Samsioe, A.; Papadogiannakis, N.; Kawecki, A.; Hörnfeldt, B.; Saade, G. R.; Klitz, W. Association of zoonotic Ljungan virus with intrauterine fetal deaths. In: Birth Defects Res. A. Clin. Mol. Teratol. 79 (2007) S. 488–493.

    Google Scholar 

  • Ogram SA, Flanegan JB. Non-template functions of viral RNA in picornavirus replication. Curr Opin Virol. 2011 Nov;1(5):339-46. doi: https://dx.doi.org/10.1016/j.coviro.2011.09.005. Review. PubMed PMID: 22140418; PubMed Central PMCID: PMC3227123.

  • Olijve L, Jennings L, Walls T. Human Parechovirus: an Increasingly Recognized Cause of Sepsis-Like Illness in Young Infants. Clin Microbiol Rev. 2017 Nov 15;31(1). pii: e00047–17. doi: https://dx.doi.org/10.1128/CMR.00047-17. Print 2018 Jan. Review. PubMed PMID: 29142080; PubMed Central PMCID: PMC5740974.

  • Olson, N. H.; Kolatkar, P. R.; Oliveira, M. A.; Cheng, R. H.; Greve, J. M.; McClelland, A.; Baker, T. S.; Rossmann, M. G. Structure of a human rhinovirus complexed with its receptor molecule. In: Proc. Natl. Acad. Sci. USA 90 (1993) S. 507–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ortiz-Zapater E, Santis G, Parsons M. CAR: A key regulator of adhesion and inflammation. Int J Biochem Cell Biol. 2017 Aug;89:1–5. doi: https://dx.doi.org/10.1016/j.biocel.2017.05.025. Epub 2017 May 22. Review. PubMed PMID: 28545889.

  • Paul, A. V.; Rieder, E.; Kim, D. W.; Boom, J. H. van; Wimmer E. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of Vpg. In: J. Virol. 74 (2000) S. 10359–10370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul AV, Wimmer E. Initiation of protein-primed picornavirus RNA synthesis. Virus Res. 2015 Aug 3;206:12–26. doi: https://dx.doi.org/10.1016/j.virusres.2014.12.028. Epub 2015 Jan 12. Review. PubMed PMID: 25592245; PubMed Central PMCID: PMC4476921.

  • Paulmann, D.; Magulski, T.; Schwarz, R.; Heitmann, L.; Flehmig, B.; Vallbracht, A.; Dotzauer, A. Hepatitis-A virus protein 2B suppresses beta interferon (IFN) gene transcription by interfering with IFN regulatory factor 3 activation. In: J. Gen. Virol. 89 (2008) S. 1593–1604.

    Article  CAS  PubMed  Google Scholar 

  • Peersen OB. Picornaviral polymerase structure, function, and fidelity modulation. Virus Res. 2017 Apr 15;234:4–20. doi: https://dx.doi.org/10.1016/j.virusres.2017.01.026. Epub 2017 Feb 2. Review. PubMed PMID: 28163093; PubMed Central PMCID: PMC5476519.

  • Plevka P, Perera R, Cardosa J, Kuhn RJ, Rossmann MG. Crystal structure of human enterovirus 71. Science. 2012 Jun 8;336(6086):1274. doi: https://dx.doi.org/10.1126/science.1218713. Epub 2012 Mar 1. PubMed PMID: 22383808; PubMed Central PMCID: PMC3448362.

  • Racaniello, V. R. One hundred years of poliovirus pathogenesis. In: Virology 344 (2006) S. 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Rieder, E.; Paul, A. V.; Kim, D. W.; van Boom, J. H.; Wimmer, E. Genetic and biochemical studies of poliovirus cis-acting replication element cre in relation to Vpg uridylylation. In: J. Virol. 74 (2000) S. 10371–10380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossmann, M. G.; Arnold, E.; Erickson, J. W.; Frankenberger, E. A.; Griffith, J. P.; Hecht, H. J.; Johnson, J.; Kamer, J.; Luo, M.; Mosser, A. G.; Rueckert, R. R.; Sherry, B.; Vriend, G. Structure of human common cold virus and functional relationship to other picornaviruses. In: Nature 317 (1985) S. 145–153.

    Article  CAS  PubMed  Google Scholar 

  • Rossmann, M. G.; Bella, J.; Kolatkar, P. R.; He, Y.; Wimmer, E.; Kuhn, R. J.; Baker, T. S. Cell recognition and entry by rhino- and enteroviruses. In: Virology 269 (2000) S. 239–247.

    Article  CAS  PubMed  Google Scholar 

  • Rossmann, M. G. The canyon hypothesis. Hiding the cell receptor attachment site an a viral surface from immune surveillance. In: J. Biol. Chem. 264 (1989) S. 14587–14590.

    Google Scholar 

  • Savolainen, C.; Blomqvist, S.; Hovi, T. Human rhinoviruses. In: Paediatr. Respir. Rev. 4 (2003) S. 91–98.

    Article  PubMed  Google Scholar 

  • Shimizu, H.; Agoh, M.; Agoh, Y.; Yoshida, H.; Yoneyama, T.; Hagiwara, A.; Miyamura, T. Mutation in the 2C region of poliovirus responsible for altered sensitivity to benzimidazole derivatives. In: J. Virol. 74 (2000) S. 4164–4154.

    Article  Google Scholar 

  • Steil, B. P.; Barton, D. J. Cis-active RNA elements (CREs) and picornavirus RNA replication. In: Virus Res. 139 (2009) S. 240–252.

    Article  CAS  PubMed  Google Scholar 

  • Steil BP, Barton DJ. Conversion of VPg into VPgpUpUOH before and during poliovirus negative-strand RNA synthesis. J Virol. 2009 Dec;83(24):12660–70. doi: https://dx.doi.org/10.1128/JVI.01676-08. Epub 2009 Oct 7. PubMed PMID: 19812161; PubMed Central PMCID: PMC2786823.

  • Tami, C.; Silberstein, E.; Manangeeswaran, M.; Freeman, G. J.; Umetsu, S. E.; DeKruyff, R. H.; Umetsu, D. T.; Kaplan, G. G. Immunoglobulin A (IgA) is a natural ligand of Hepatitis-A virus cellular receptor 1 (HAVCR1), and the association of IgA with HAVCR1 enhances virus-receptor interactions. In: J. Virol. 81 (2007) S. 3437–3446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan SZ, Tan MZ, Prabakaran M. Saffold virus, an emerging human cardiovirus. Rev Med Virol. 2017 Jan;27(1). doi: https://dx.doi.org/10.1002/rmv.1908

  • Tavoschi L, Severi E, Niskanen T, Boelaert F, Rizzi V, Liebana E, Gomes Dias J, Nichols G, Takkinen J, Coulombier D. Food-borne diseases associated with frozen berries consumption: a historical perspective, European Union, 1983 to 2013. Euro Surveill. 2015 Jul 23;20(29):21193. PubMed PMID: 26227371.

    Article  CAS  PubMed  Google Scholar 

  • Tuthill TJ, Groppelli E, Hogle JM, Rowlands DJ. Picornaviruses. Curr Top Microbiol Immunol. 2010;343:43-89. doi: https://dx.doi.org/10.1007/82_2010_37. PubMed PMID: 20397067; PubMed Central PMCID: PMC3018333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, C. Y.; Chang, T. Y.; Walfield, A. M; Ye, J.; Shen, M.; Chen, S. P.; Li, M. C.; Lin, Y. L.; Jong, M. H.; Yang, P. C.; Chyr, N.; Kramer, E.; Brown, F. Effective synthetic peptide vaccine for foot-and-mouth disease in swine. In: Vaccine 20 (2002) S. 2603–2610.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Ren J, Gao Q, Hu Z, Sun Y, Li X, Rowlands DJ, Yin W, Wang J, Stuart DI, Rao Z, Fry EE. Hepatitis A virus and the origins of picornaviruses. Nature. 2015 Jan 1;517(7532):85–88. doi: https://dx.doi.org/10.1038/nature13806. Epub 2014 Oct 19. PubMed PMID: 25327248; PubMed Central PMCID: PMC4773894.

  • Wasley, A.; Fiore, A.; Bell, B. P. Hepatitis-A in the era of vaccination. In: Epidemiol. Rev. 28 (2006) S. 101–111.

    Article  PubMed  Google Scholar 

  • Wells, V. R.; Plotch, S. J.; De Stefano, J. J. Determination of the mutation rate of poliovirus RNA-dependent RNA polymerase. In: Virus Res. (2001) S. 119–132.

    Google Scholar 

  • Van der Werf, N.; Kroese, F. G.; Rozing, J.; Hillebrands, J. L. Viral infections as potential triggers of type 1 diabetes. In: Diabetes Metab. Res. Rev. 23 (2007) S. 169–183.

    Article  PubMed  CAS  Google Scholar 

  • Zheng L, Wang F, Huang J, **n H. Evaluation of the association of zoonotic Ljungan virus with perinatal deaths and fetal malformation. Birth Defects Res C Embryo Today. 2015 Mar;105(1):81–5. doi: https://dx.doi.org/10.1002/bdrc.21093. Epub 2015 Mar 19. Review. PubMed PMID: 25789980.

  • Zhu L, Wang X, Ren J, Kotecha A, Walter TS, Yuan S, Yamashita T, Tuthill TJ, Fry EE, Rao Z, Stuart DI. Structure of human Aichi virus and implications for receptor binding. Nat Microbiol. 2016 Sep 5;1(11):16150. doi: https://dx.doi.org/10.1038/nmicrobiol.2016.150. PubMed PMID: 27595320.

    Article  CAS  PubMed  Google Scholar 

  • Zoll, J.; Heus, H. A.; van Kuppeveld, F. J.; Melchers, W. J. The structure-function relationship of the enterovirus 3′-UTR. In: Virus Res. 139 (2009) S. 209–216.

    Article  CAS  PubMed  Google Scholar 

  • de Crom SC, Rossen JW, van Furth AM, Obihara CC. Enterovirus and parechovirus infection in children: a brief overview. Eur J Pediatr. 2016 Aug;175(8):1023–9. doi: https://dx.doi.org/10.1007/s00431-016-2725-7. Epub 2016 May 7. Review. PubMed PMID: 27156106; PubMed Central PMCID: PMC4930465.

Abschnitt 14.2

  • Appleton, H.; Higgins, P. G. Letter: Viruses and gastroenteritis in infants. In: Lancet 1, 7919 (1975) S. 1297.

    Google Scholar 

  • Arias CF, DuBois RM. The Astrovirus Capsid: A Review. Viruses. 2017 Jan 19;9(1). pii: E15. doi: https://dx.doi.org/10.3390/v9010015. Review. PubMed PMID: 28106836; PubMed Central PMCID: PMC5294984.

  • Bonaparte, R. S.; Hair, P. S.; Banthia, D.; Marshall, D. M.; Cunnion, K. M.; Krishna, N. K. Human astrovirus coat protein inhibits serum complement activation via C1, the first component of the classical pathway. In: J. Virol. 82 (2008) S. 817–827.

    Article  CAS  PubMed  Google Scholar 

  • Boujon,C.J.; Koch, M.C.; Seuberlich,T. The Expanding Field of Mammalian Astroviruses: Opportunities and Challenges in Clinical Virology. In: Adv. Virus Res. 99 (2017) S. 109-137.

    Article  CAS  PubMed  Google Scholar 

  • Cortez V, Meliopoulos VA, Karlsson EA, Hargest V, Johnson C, Schultz-Cherry S. Astrovirus Biology and Pathogenesis. Annu Rev Virol. 2017 Sep 29;4(1):327–348. doi: https://dx.doi.org/10.1146/annurev-virology-101416-041742. Epub 2017 Jul 17. Review. PubMed PMID: 28715976.

  • Donato C, Vijaykrishna D. The Broad Host Range and Genetic Diversity of Mammalian and Avian Astroviruses. Viruses. 2017 May 10;9(5). pii: E102. doi: https://dx.doi.org/10.3390/v9050102. Review. PubMed PMID: 28489047; PubMed Central PMCID: PMC5454415.

  • Fuentes C, Bosch A, Pintó RM, Guix S. Identification of human astrovirus genome-linked protein (VPg) essential for virus infectivity. J Virol. 2012 Sep;86(18):10070–8. doi: https://dx.doi.org/10.1128/JVI.00797-12. Epub 2012 Jul 11. PubMed PMID: 22787221; PubMed Central PMCID: PMC3446559.

  • Geigenmüller, U.; Chew, T.; Ginzton, N.; Matsui S. M. Processing of nonstructural protein 1a of human astrovirus. In: J. Virol. 76 (2002) S. 2003–2008.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guix, S.; Caballero, S.; Bosch, A.; Pintó, R. M. Human astrovirus C-terminal nsP1a protein is involved in RNA replication. In: Virology 333 (2005) S. 124–131.

    Article  CAS  PubMed  Google Scholar 

  • Guix, S.; Caballero, S.; Bosch, A.; Pintó, R. M. C-terminal nsP1a protein of human astrovirus colocalizes with the endoplasmic Retikulum and viral RNA. In: J. Virol. 78 (2004) S. 1362713636.

    Google Scholar 

  • Johnson C, Hargest V, Cortez V, Meliopoulos VA, Schultz-Cherry S. Astrovirus Pathogenesis. Viruses. 2017 Jan 22;9(1). pii: E22. doi: https://dx.doi.org/10.3390/v9010022. Review. PubMed PMID: 28117758; PubMed Central PMCID: PMC5294991.

  • Jonassen, C. M.; Jonassen, T. TØ.; Sveen, T. M.; Grinde, B. Complete genomic sequences of astroviruses from sheep and turkey: comparison with related viruses. In: Virus Res. 91 (2003) S. 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Krishna, N. K.; Cunnion, K. M. Human astrovirus coat protein: a novel C1 inhibitor. In: Adv. Exp. Med. Biol. 632 (2008) S. 237–251.

    CAS  PubMed  Google Scholar 

  • Moser, L. A.; Carter, M.; Schultz-Cherry, S. Astrovirus increases epithelial barrier permeability independently of viral replication. In: J. Virol. 81 (2007) S. 11937–11945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moser, L. A.; Schultz-Cherry, S. Suppression of astrovirus replication by an ERK1/2 inhibitor. In: J. Virol. 82 (2008) S. 7475–7482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vu DL, Cordey S, Brito F, Kaiser L. Novel human astroviruses: Novel human diseases? J Clin Virol. 2016 Sep;82:56–63. doi: https://dx.doi.org/10.1016/j.jcv.2016.07.004. Epub 2016 Jul 11. Review. PubMed PMID: 27434149.

  • Vu DL, Bosch A, Pintó RM, Guix S. Epidemiology of Classic and Novel Human Astrovirus: Gastroenteritis and Beyond. Viruses. 2017 Feb 18;9(2). pii: E33. doi: https://dx.doi.org/10.3390/v9020033. Review. PubMed PMID: 28218712; PubMed Central PMCID: PMC5332952.

  • Walter, J. E.; Mitchell, D. K. Astrovirus infection in children. In: Curr. Opin. Infect. Dis. 16 (2003) S. 247–253.

    Article  PubMed  Google Scholar 

Abschnitt 14.3

  • Alhatlani B, Vashist S, Goodfellow I. Functions of the 5' and 3' ends of calicivirus genomes. Virus Res. 2015 Aug 3;206:134–43. doi: https://dx.doi.org/10.1016/j.virusres.2015.02.002. Epub 2015 Feb 9. Review. PubMed PMID: 25678268; PubMed Central PMCID: PMC4509552.

  • Bartnicki E, Cunha JB, Kolawole AO, Wobus CE. Recent advances in understanding noroviruses. F1000Res. 2017 Jan 26;6:79. doi: https://dx.doi.org/10.12688/f1000research.10081.1. eCollection 2017. Review. PubMed PMID: 28163914; PubMed Central PMCID: PMC5270584.

  • Bhella, D.; Gatherer, D.; Chaudhry, Y.; Pink, R.; Goodfellow, I. G. Structural insights into calicivirus attachment and uncoating. In: J. Virol. 82 (2008) S. 8051–8058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao, S.; Lou, Z.; Tan, M.; Chen, Y.; Liu, Y.; Zhang, Z.; Zhang, X. C.; Jiang, X.; Li, X.; Rao, Z. Structural basis for the recognition of blood group trisaccharides by norovirus. In: J. Virol. 81 (2007) S. 5949–5957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, R.; Neill, J. D.; Estes, M. K.; Prasad, B. V. X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. In: Proc. Natl. Acad. Sci. USA 103 (2006) S. 8048–8053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke, I. N.; Lambden, P. R. The molecular biology of caliciviruses. In: J. Gen. Virol. 78 (2001) S. 291–301.

    Article  Google Scholar 

  • Daughenbaugh, K. F.; Fraser, C. S.; Hershey, J. W.; Hardy, M. E. The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. In: EMBO J. 22 (2003) S. 2852–2859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desselberger U. Caliciviridae Other Than Noroviruses. Viruses. 2019 Mar 21;11(3). pii: E286. doi: https://dx.doi.org/10.3390/v11030286. Review. PubMed PMID: 30901945; PubMed Central PMCID: PMC6466229.

  • Estes, M. K.; Prasad, B. V.; Atmar, R. L. Noroviruses everywhere: has something changed? In: Curr. Opin. Infect. Dis. 19 (2006) S. 467–474.

    Article  PubMed  Google Scholar 

  • Geissler, K.; Schneider, K.; Fleuchaus, A.; Parrish, C. R.; Sutter, G.; Truyen, U. Feline calicivirus capsid protein expression and capsid assembly in cultured feline cells. In: J. Virol. 73 (1999) S. 834–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geissler, K.; Schneider, K.; Platzer; G.; Truyen, B.; Kaaden, O.- R.; Truyen, U. Genetic and antigenic heterogenity among feline calicivirus isolates from distinct disease cluster. In: Virus Res. 48 (1997) S. 193–206.

    Google Scholar 

  • Hansman, G. S.; Oka, T.; Katayama, K.; Takeda, N. Human sapoviruses: genetic diversity, recombination, and classification. In: Rev. Med. Virol. 17 (2007) S. 133–141.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, X.; Huang, P.; Zhong, W.; Tan, M.; Farkas, T.; Morrow, A. L.; Newburg, D. S.; Ruiz-Palacios, G. M.; Pickering, L. K. Human milk contains elements that block binding of noroviruses to human histo-blood group antigens in saliva. In: J. Infect. Dis. 190 (2004) S. 1850–1859.

    Article  CAS  PubMed  Google Scholar 

  • Karst SM, Zhu S, Goodfellow IG. The molecular pathology of noroviruses. J Pathol. 2015 Jan;235(2):206–16. doi: https://dx.doi.org/10.1002/path.4463. Review. PubMed PMID: 25312350.

  • Karst SM, Wobus CE, Goodfellow IG, Green KY, Virgin HW. Advances in norovirus biology. Cell Host Microbe. 2014 Jun 11;15(6):668-80. doi: https://dx.doi.org/10.1016/j.chom.2014.05.015. Review. PubMed PMID: 24922570; PubMed Central PMCID: PMC4113907.

  • Koch, J.; Schneider, T.; Stark, K.; Schreier, E. Norovirus infections in Germany. In: Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 49 (2006) S. 296–309.

    Article  CAS  PubMed  Google Scholar 

  • Koopmans, M. Progress in understanding norovirus epidemiology. In: Curr. Opin. Infect. Dis. 21 (2008) S. 544–552.

    Article  PubMed  Google Scholar 

  • L’Homme, Y.; Sansregret, R.; Plante-Fortier, E.; Lamontagne, A. M.; Ouardani, M.; Lacroix, G.; Simard, C. Genomic characterization of swine caliciviruses representing a new genus of Caliciviridae. In: Virus Genes 39 (2009) S. 66–75.

    Article  PubMed  CAS  Google Scholar 

  • Mahar JE, Read AJ, Gu X, Urakova N, Mourant R, Piper M, Haboury S, Holmes EC, Strive T, Hall RH. Detection and Circulation of a Novel Rabbit Hemorrhagic Disease Virus in Australia. In: Emerg. Inf. Dis. 24 (2018) S. 22-31.

    Article  CAS  Google Scholar 

  • Martella, V.; Lorusso, E.; Decaro, N.; Elia, G.; Radogna, A.; D’Abramo, M.; Desario, C.; Cavalli, A.; Corrente, M.; Camero, M.; Germinario, C. A.; Bányai, K.; Di Martino, B.; Marsilio, F.; Carmichael, L.E.; Buonavoglia, C. Detection and molecular characterization of a canine norovirus. In: Emerg. Infect. Dis. 14 (2008) S. 1306–1308.

    Article  PubMed  PubMed Central  Google Scholar 

  • McCormick, C. J.; Salim, O.; Lambden, P. R.; Clarke, I. N. Translational termination re-initiation between ORF1 and ORF2 enables capsid expression in a bovine norovirus without the need for production of viral sub-genomic RNA. In: J. Virol. 2008

    Google Scholar 

  • McFadden N, Bailey D, Carrara G, Benson A, Chaudhry Y, Shortland A, Heeney J, Yarovinsky F, Simmonds P, Macdonald A, Goodfellow I. Norovirus regulation of the innate immune response and apoptosis occurs via the product of the alternative open reading frame 4. PLoS Pathog. 2011 Dec;7(12):e1002413. doi: https://dx.doi.org/10.1371/journal.ppat.1002413. Epub 2011 Dec 8. PubMed PMID: 22174679; PubMedCentral PMCID: PMC3234229.

  • Oka, T.; Yamamoto, M.; Katayama, K.; Hansman, G. S.; Ogawa, S.; Miyamura, T.; Takeda, N. Identification of the cleavage sites of sapovirus open reading frame 1 polyprotein. In: J. Gen. Virol. 87 (2006) S. 3329–3338.

    Article  CAS  PubMed  Google Scholar 

  • Ossiboff, R. J.; Parker, J. S. Identification of regions and residues in feline junctional adhesion molecule required for feline calicivirus binding and infection. In: J. Virol. 81 (2007) S. 13608–13621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radford, A. D.; Gaskell, R. M.; Hart, C. A. Human norovirus infection and the lessons from animal caliciviruses. In: Curr. Opin. Infect. Dis. 17 (2004) S. 471–478.

    Article  PubMed  Google Scholar 

  • Robel, I.; Gebhardt, J.; Mesters, J. R.; Gorbalenya, A.; Coutard, B.; Canard, B.; Hilgenfeld, R.; Rohayem, J. Functional characterization of the cleavage specificity of the sapovirus chymotrypsin-like protease. In: J. Virol. 82 (2008) S. 8085–8093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rockx, B. H.; Vennema, H.; Hoebe, C. J.; Duizer, E.; Koopmans, M. P. Association of histo-blood group antigens and susceptibility to norovirus infections. In: J. Infect. Dis. 191 (2005) S.749–754.

    Article  PubMed  Google Scholar 

  • Royall E, Locker N. Translational Control during Calicivirus Infection. Viruses. 2016 Apr 20;8(4):104. doi: https://dx.doi.org/10.3390/v8040104. Review. PubMed PMID: 27104553; PubMed Central PMCID: PMC4848598.

  • Scipioni, A.; Mauroy, A.; Vinjé, J.; Thiry, E. Animal noroviruses. In: The Veterinary Journal 178 (2008) S. 32–45.

    Article  CAS  PubMed  Google Scholar 

  • Sosnovtsev, S.; Green, K. Y. RNA transcripts derived from a cloned full-length copy of the feline calicivirus genome do not require VpG for infectivity. In: Virology 210 (2000) S. 383–390.

    Article  Google Scholar 

  • Tan.; M., Jiang, X. Norovirus and its histo-blood group antigen receptors: an answer to a historical puzzle. In: Trends Microbiol. 13 (2005) S. 285–293.

    Article  CAS  PubMed  Google Scholar 

  • Tan, M.; Jiang, X. Norovirus-host interaction: implications for disease control and prevention. In: Expert. Rev. Mol. Med. 9 (2007) S. 1–22.

    Article  PubMed  Google Scholar 

  • Thorne LG, Goodfellow IG. Norovirus gene expression and replication. J Gen Virol. 2014 Feb;95(Pt 2):278–91. doi: https://dx.doi.org/10.1099/vir.0.059634-0. Epub 2013 Nov 16. Review. PubMed PMID: 24243731.

  • Wirblich, C.; Thiel, H.; Meyers, G. Genetic map of the calicivirus rabbit hemorrhagic disease virus as deduced from in vitro translation studies. In: J. Virol. 70 (1996) S. 7974–7983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Abschnitt 14.4

  • Bouwknegt, M.; Lodder-Verschoor, F.; van der Poel, W. H.; Rutjes, S. A.; de Roda Husman, A. M. Hepatitis-E virus RNA in commercial porcine livers in The Netherlands. In: J. Food Prot. 70 (2007) S. 2889–2895.

    Article  CAS  PubMed  Google Scholar 

  • Bradley, D. W.; Balayan, M. S. Viruses of enterically transmitted non-A, non-B hepatitis. In: Lancet 1 (1988) S. 819.

    Google Scholar 

  • Cao D, Meng XJ. Molecular biology and replication of hepatitis E virus. Emerg Microbes Infect. 2012 Aug;1(8):e17. doi: https://dx.doi.org/10.1038/emi.2012.7. Epub 2012 Aug 22. Review. PubMed PMID: 26038426; PubMed Central PMCID: PMC3630916.

  • Chandra, V.; Kar-Roy, A.; Kumari, S.; Mayor, S.; Jameel, S. The Hepatitis-E virus ORF3 protein modulates epidermal growth factor receptor trafficking, STAT3 translocation, and the acute-phase response. In: J. Virol. 82 (2008) S. 7100–7110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra, V.; Taneja, S.; Kalia, M.; Jameel, S. Molecular biology and pathogenesis of Hepatitis-E virus. In: J. Biosci. 33 (2008) S. 451–464.

    Article  CAS  PubMed  Google Scholar 

  • Choo, Q. L.; Kuo, G.; Weiner, A. J.; Overby, L. R.; Bradley, D. W.; Houghton, M. Isolation of a cDNA clone from a blood-borne non-A, non-B viral hepatitis genome. In: Science 244 (1989) S. 359–362.

    Article  CAS  PubMed  Google Scholar 

  • Donnelly MC, Scobie L, Crossan CL, Dalton H, Hayes PC, Simpson KJ. Review article: hepatitis E-a concise review of virology, epidemiology, clinical presentation and therapy. Aliment Pharmacol Ther. 2017 Jul;46(2):126–141. doi: https://dx.doi.org/10.1111/apt.14109. Epub 2017 Apr 27. Review. PubMed PMID: 28449246.

  • Faber M, Willrich N, Schemmerer M, Rauh C, Kuhnert R, Stark K, Wenzel JJ. Hepatitis E virus seroprevalence, seroincidence and seroreversion in the German adult population. J Viral Hepat. 2018 Jan 28. doi: https://dx.doi.org/10.1111/jvh.12868. [Epub ahead of print] PubMed PMID: 29377436.

  • Faber MS, Wenzel JJ, Jilg W, Thamm M, Höhle M, Stark K. Hepatitis E virus seroprevalence among adults, Germany. Emerg Infect Dis. 2012 Oct;18(10):1654–7. doi: https://dx.doi.org/10.3201/eid1810.111756. PubMed PMID: 23018055; PubMed Central PMCID: PMC3471611.

  • Guu, T. S.; Liu, Z.; Ye, Q.; Mata, D. A.; Li K.; Yin, C.; Zhang, J.; Tao, Y. J. Structure of the Hepatitis-E virus-like particle suggests mechanisms for virus assembly and receptor binding. In: Proc. Natl. Acad. Sci. USA 106 (2009) S. 12992–12997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haagsma, E. B.; van den Berg, A. P.; Porte, R. J.; Benne, C. A.; Vennema, H.; Reimerink, J.H.; Koopmans, M. P. Chronic Hepatitis-E virus infection in liver transplant recipients. In: Liver Transpl. 14 (2008) S. 547–553.

    Article  PubMed  Google Scholar 

  • Kaci, S.; Nöckler, K.; Johne, R. Detection of Hepatitis-E virus in archived German wild boar serum samples. In: Vet. Microbiol. 128 (2008) S. 380–385.

    Article  PubMed  Google Scholar 

  • Kamar, N.; Selves, J.; Mansuy, J. M.; Ouezzani, L.; Péron, J. M.; Guitard, J.; Cointault, O.; Esposito, L.; Abravanel, F.; Danjoux, M.; Durand, D.; Vinel, J. P.; Izopet, J.; Rostaing, L. Hepatitis-E virus and chronic hepatitis in organ-transplant recipients. In: N. Engl. J. Med. 358 (2008) S. 811–817.

    Article  CAS  PubMed  Google Scholar 

  • Kannan, H.; Fan, S.; Patel, D.; Bossis, I.; Zhang, Y. J. The Hepatitis-E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. In: J. Virol. 83 (2009) S. 6375–6382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, S.; Tang, X.; Seetharaman, J.; Yang, C.; Gu, Y.; Zhang, J.; Du, H.; Shih, J. W.; Hew, C. L.; Sivaraman, J.; **a, N. Dimerization of Hepatitis-E virus capsid protein E2s domain is essential for virus-host interaction. In: PLoS Pathog. 5 (2009) e1000537.

    Google Scholar 

  • Mansuy, J. M.; Legrand-Abravanel, F.; Calot, J. P.; Peron, J. M.; Alric, L.; Agudo, S.; Rech, H.; Destruel, F.; Izopet, J. High prevalence of anti-Hepatitis-E virus antibodies in blood donors from South West France. In: J. Med. Virol. 80 (2008) S. 289–293.

    Article  PubMed  Google Scholar 

  • Meng, X. J.; Halbur, P. G.; Shapiro, M. S.; Govindarajan, S.; Bruna, J. D.; Mushahwar, I. K.; Purcell, R. H.; Emerson, S. U. Genetic and experimental evidence for cross-species infection by swine Hepatitis-E virus. In: J. Virol. 72 (1998) S. 9714–9721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng, X. J. Hepatitis-E virus: Animal reservoirs and zoonotic risk. In: Vet. Microbiol. (2009)

    Google Scholar 

  • Nan Y, Zhang YJ. Molecular Biology and Infection of Hepatitis E Virus. Front Microbiol. 2016 Sep 7;7:1419. doi: https://dx.doi.org/10.3389/fmicb.2016.01419. eCollection 2016. Review. PubMed PMID: 27656178; PubMed Central PMCID: PMC5013053.

  • Nimgaonkar I, Ding Q, Schwartz RE, Ploss A. Hepatitis E virus: advances and challenges. Nat Rev Gastroenterol Hepatol. 2018 Feb;15(2):96–110. doi: https://dx.doi.org/10.1038/nrgastro.2017.150. Epub 2017 Nov 22. Review. PubMed PMID: 29162935.

  • Panda SK, Varma SP. Hepatitis e: molecular virology and pathogenesis. J Clin Exp Hepatol. 2013 Jun;3(2):114–24. doi: https://dx.doi.org/10.1016/j.jceh.2013.05.001. Epub 2013 May 30. Review. PubMed PMID: 25755485; PubMed Central PMCID: PMC3940135.

  • Primadharsini PP, Nagashima S, Okamoto H. Genetic Variability and Evolution of Hepatitis E Virus. Viruses. 2019 May 18;11(5). pii: E456. doi: https://dx.doi.org/10.3390/v11050456.Review. PubMed PMID: 31109076; PubMed Central PMCID: PMC6563261.

  • Purcell, R. H.; Emerson, S. U. Hepatitis-E: an emerging awareness of an old disease. In: J. Hepatol. 48 (2008) S. 494–503.

    Article  CAS  PubMed  Google Scholar 

  • Purdy MA, Khudyakov YE. The molecular epidemiology of hepatitis E virus infection. Virus Res. 2011 Oct;161(1):31–9. doi: https://dx.doi.org/10.1016/j.virusres.2011.04.030. Epub 2011 May 11. Review. PubMed PMID: 21600939.

  • Purdy MA, Harrison TJ, Jameel S, Meng XJ, Okamoto H, Van der Poel WHM, Smit DB, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Hepeviridae. J Gen Virol. 2017 Nov;98(11):2645–2646. doi: https://dx.doi.org/10.1099/jgv.0.000940. Epub 2017 Oct 12. PubMed PMID: 29022866; PubMed Central PMCID: PMC5718254.

  • Shrestha, M. P.; Scott, R. M.; Joshi, D. M.; Mammen, M. P. Jr.; Thapa, G. B.; Thapa, N.; Myint, K. S.; Fourneau, M.; Kuschner, R. A.; Shrestha, S. K.; David, M. P.; Seriwatana, J.; Vaughn, D. W.; Safary, A.; Endy, T. P.; Innis, B. L. Safety and efficacy of a recombinant Hepatitis-E vaccine. In: N. Engl. J. Med. 356 (2007) S. 895–903.

    Article  CAS  PubMed  Google Scholar 

  • Spahr C, Knauf-Witzens T, Vahlenkamp T, Ulrich RG, Johne R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. In: Zoonoses Public Health (2018) S. 11–29. https://dx.doi.org/10.1111/zph.12405

  • Surjit, M.; Jameel, S.; Lal, S. K. Cytoplasmic localization of the ORF2 protein of Hepatitis-E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic Retikulum. In: J. Virol. 81 (2007) S. 3339–3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tygai, S.; Jameel, S.; Lal, S. K. Self-association and map** of the interaction domain of Hepatitis-E-virus ORF3 protein. In: J. Virol. 75 (2001) S. 2493–2498.

    Article  Google Scholar 

  • Wang, Y.; Zhang, H.; Ling, R.; Li, H.; Harrison, T. J. The complete sequence of Hepatitis-E virus genotype 4 reveals an alternative strategy for translation of openreading frames 2 and 3. In: J. Gen. Virol. 81 (2000) S. 1675–1686.

    CAS  PubMed  Google Scholar 

  • Weigand K, Weigand K, Schemmerer M, Müller M, Wenzel JJ. Hepatitis E Seroprevalence and Genoty** in a Cohort of Wild Boars in Southern Germany and Eastern Alsace. Food Environ Virol. 2017 Dec 6. doi: https://dx.doi.org/10.1007/s12560-017-9329-x. [Epub ahead of print] PubMed PMID: 29214558.

  • Worm, H. C.; Schlauder, G. G.; Wurzer, H.; Mushahwar, I. K. Identification of a novel variant of Hepatitis-E virus in Austria: sequence, phylogenetic and serological analysis. In: J. Gen. Virol. 81 (2000) S. 2885–2890.

    Article  CAS  PubMed  Google Scholar 

Abschnitt 14.5

  • : Manickam C, Reeves RK. Modeling HCV disease in animals: virology, immunology and pathogenesis of HCV and GBV-B infections. Front Microbiol. 2014 Dec 8;5:690. doi: https://dx.doi.org/10.3389/fmicb.2014.00690. eCollection 2014. Review. PubMed PMID: 25538700; PubMed Central PMCID: PMC4259104.

  • : Da Mota LD, Nishiya AS, Finger-Jardim F, Barral MF, Silva CM, Nader MM, Gonçalves CV, Da Hora VP, Silveira J, Basso RP, Soares MA, Levi JE, Martínez AM. Prevalence of human pegivirus (HPgV) infection in patients carrying HIV-1C or non-C in southern Brazil. J Med Virol. 2016 Dec;88(12):2106–2114. Doi https://dx.doi.org/10.1002/jmv.24574. Epub 2016 May 25. PubMed PMID: 27171504.

  • Adams Waldorf KM, Nelson BR, Stencel-Baerenwald JE, Studholme C, Kapur RP, Armistead B, Walker CL, Merillat S, Vornhagen J, Tisoncik-Go J, Baldessari A, Coleman M, Dighe MK, Shaw DWW, Roby JA, Santana-Ufret V, Boldenow E, Li J, Gao X, Davis MA, Swanstrom JA, Jensen K, Widman DG, Baric RS, Medwid JT, Hanley KA, Ogle J, Gough GM, Lee W, English C, Durning WM, Thiel J, Gatenby C, Dewey EC, Fairgrieve MR, Hodge RD, Grant RF, Kuller L, Dobyns WB, Hevner RF, Gale M Jr, Rajagopal L. Congenital Zika virus infection as a silent pathology with loss of neurogenic output in the fetal brain. Nat Med. 2018 Mar;24(3):368–374. doi: https://dx.doi.org/10.1038/nm.4485. Epub 2018 Feb 5. PubMed PMID: 29400709; PubMed Central PMCID:PMC5839998.

  • Appel, N.; Zayas, M.; Miller, S.; Krijnse-Locker, J.; Schaller, T.; Friebe, P.; Kallis, S.; Engel, U.; Bartenschlager, R. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. In: PLoS Pathog. 28 (2008) e1000035.

    Google Scholar 

  • Bartenschlager, R.; Ahlborn-Laake, L.; Yasargil, K.; Mous, J.; Jacobson, H. Substrate determinants for cleavage in cis and trans by hepatitis C virus NS3 proteinase. In: J. Virol. 69 (1995) S. 98–205.

    Article  Google Scholar 

  • Bartenschlager, R.; Lohmann, V. Replication of hepatitis-C-virus. In: J. Gen. Virol. 81 (2000) S. 1631–1648.

    CAS  PubMed  Google Scholar 

  • Bartenschlager, R.; Miller, S. Molecular aspects of Dengue virus replication. In: Future Microbiol. 3 (2008) S. 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Bauermann FV, Ridpath JF. HoBi-like viruses--the typical ‘atypical bovine pestivirus’. Anim Health Res Rev. 2015 Jun;16(1):64–9. doi:https://dx.doi.org/10.1017/S146625231500002X. Review. PubMed PMID: 26050574.

  • Bauhofer, O.; Summerfield, A.; Sakoda, Y.; Tratschin, J. D.; Hofmann, M. A.; Ruggli, N. Classical swine fever virus Npro interacts with interferon regulatory factor 3 and induces its proteasomal degradation. In: J. Virol. 81(2007) S. 3087–3096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bavia L, Mosimann AL, Aoki MN, Duarte Dos Santos CN. A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J. 2016 May 28;13:84. doi: https://dx.doi.org/10.1186/s12985-016-0541-3. Review. PubMed PMID: 27233361; PubMed Central PMCID: PMC4884392.

  • Becher, P.; Orlich, M.; Thiel, H.-J. RNA recombination between persisting pestivirus and a vaccine strain: generation of cytopathogenic virus and induction of lethal disease. In: J. Virol. 75 (2001) S. 6256–6264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Becher P, Tautz N. RNA recombination in pestiviruses: cellular RNA sequences in viral genomes highlight the role of host factors for viral persistence and lethal disease. RNA Biol. 2011 Mar-Apr;8(2):216–24. Epub 2011 Mar 1. Review. PubMed PMID: 21358277.

    Google Scholar 

  • Berman, K.; Kwo, P. Y. Boceprevir, an NS3 protease inhibitor of HCV. In: Clin. Liver Dis. 13 (2009) S. 429–39.

    Article  PubMed  Google Scholar 

  • Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI. The global distribution and burden of dengue. Nature. 2013 Apr 25;496(7446):504–7. doi: https://dx.doi.org/10.1038/nature12060. Epub 2013 Apr 7. PubMed PMID: 23563266; PubMed Central PMCID: PMC3651993.

  • Blome S, Wernike K, Reimann I, König P, Moß C, Beer M. A decade of research into classical swine fever marker vaccine CP7_E2alf (Suvaxyn(®) CSF Marker): a review of vaccine properties. Vet Res. 2017 Sep 15;48(1):51. doi: https://dx.doi.org/10.1186/s13567-017-0457-y. Review. PubMed PMID: 28915927; PubMed Central PMCID: PMC5603031.

  • Braun U, Hilbe M, Peterhans E, Schweizer M. Border disease in cattle. Vet J. 2019 Apr;246:12–20. doi: https://dx.doi.org/10.1016/j.tvjl.2019.01.006. Epub 2019 Feb 1. Review.PubMed PMID: 30902184.

  • Brinton MA. Replication cycle and molecular biology of the West Nile virus. Viruses. 2013 Dec 27;6(1):13–53. doi: https://dx.doi.org/10.3390/v6010013. Review. PubMed PMID: 24378320; PubMed Central PMCID: PMC3917430

  • Calzolari M, Zé-Zé L, Vázquez A, Sánchez Seco MP, Amaro F, Dottori M. Insect-specific flaviviruses, a worldwide widespread group of viruses only detected in insects. Infect Genet Evol. 2016 Jun;40:381–388. doi: https://dx.doi.org/10.1016/j.meegid.2015.07.032. Epub 2015 Jul 31. PubMed PMID: 26235844.

  • Chen, S. T.; Lin, Y. L.; Huang, M. T.; Wu, M. F.; Cheng, S. C.; Lei, H. Y.; Lee, C. K.; Chiou, T. W.; Wong, C. H.; Hsieh, S. L. CLEC5A is critical for dengue-virus-induced lethal disease. In: Nature 453 (2008) S. 672–676.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Z.; Rijnbrand, R.; Jangra, R. K.; Devaraj, S. G.; Qu, L.; Ma, Y.; Lemon, S. M.; Li, K. Ubiquitination and proteasomal degradation of interferon regulatory factor-3 induced by Npro from a cytopathic bovine viral diarrhea virus. In: Virology 366 (2007) S. 277–292.

    Article  CAS  PubMed  Google Scholar 

  • Chu, J. J.; Ng, M. L. Interaction of West Nile virus with alpha v beta 3 integrin mediates virus entry into cells. In: J. Biol. Chem. 279 (2004) S. 54533–54541.

    Article  CAS  PubMed  Google Scholar 

  • Chung, K. M.; Liszewski, M. K.; Nybakken, G.; Davis, A. E.; Townsend, R. R.; Fremont, D. H.; Atkinson, J. P.; Diamond, M. S. West Nile virus nonstructural protein NS1 inhibits complement activation by binding the regulatory protein factor H. In: Proc. Natl. Acad. Sci. USA 103 (2006) S. 19111–19116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke BD, Roby JA, Slonchak A, Khromykh AA. Functional non-coding RNAs derived from the flavivirus 3' untranslated region. Virus Res. 2015 Aug 3;206:53–61. doi: https://dx.doi.org/10.1016/j.virusres.2015.01.026. Epub 2015 Feb 7. Review. PubMed PMID: 25660582.

  • Domanović D, Gossner CM, Lieshout-Krikke R, Mayr W, Baroti-Toth K, Dobrota AM, Escoval MA, Henseler O, Jungbauer C, Liumbruno G, Oyonarte S, Politis C, Sandid I, Vidović MS, Young JJ, Ushiro-Lumb I, Nowotny N. West Nile and Usutu Virus Infections and Challenges to Blood Safety in the European Union. Emerg Infect Dis. 2019 Jun;25(6):1050–1057. doi: https://dx.doi.org/10.3201/eid2506.181755. PubMed PMID: 31107223; PubMed Central PMCID: PMC6537739.

  • Esteban, J. I.; Sauleda, S.; Quer, J. The changing epidemiology of hepatitis C virus infection in Europe. In: J. Hepatol. 48 (2008) S.148–162.

    Article  PubMed  Google Scholar 

  • Glass, W. G.; Lim, J. K.; Cholera, R.; Pletnev, A. G.; Gao, J. L.; Murphy, P. M. Chemokine receptor CCR5 promotes leukocyte trafficking to the brain and survival in West Nile virus infection. In: J. Exp. Med. 202 (2005) S. 1087–1098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass, W. G.; McDermott, D. H.; Lim, J. K.; Lekhong, S.; Yu, S. F.; Frank, W. A.; Pape, J.; Cheshier, R. C.; Murphy, P. M. CCR5 deficiency increases risk of symptomatic West Nile virus infection. In: J. Exp. Med. 203 (2006) S. 35–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould, E. A.; Solomon, T. Pathogenic flaviviruses. In: Lancet 371 (2008) S. 500–509.

    Article  CAS  PubMed  Google Scholar 

  • Guzman, M. G.; Kouri, G. Dengue: An update. In: Lancet Infect. Dis. 2 (2002) S. 33–42.

    Article  PubMed  Google Scholar 

  • Guzman H, Contreras-Gutierrez MA, Travassos da Rosa APA, Nunes MRT, Cardoso JF, Popov VL, Young KI, Savit C, Wood TG, Widen SG, Watts DM, Hanley KA, Perera D, Fish D, Vasilakis N, Tesh RB. Characterization of Three New Insect-Specific Flaviviruses: Their Relationship to the Mosquito-Borne Flavivirus Pathogens. Am J Trop Med Hyg. 2018 Feb;98(2):410–419. doi: https://dx.doi.org/10.4269/ajtmh.17-0350. Epub 2017 Aug 31. PubMed PMID: 29016330; PubMed Central PMCID: PMC5929187.

  • Harrison, S. C. Viral membrane fusion. In: Nat. Struct. Mol. Biol. 15 (2008) S. 690–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasan SS, Sevvana M, Kuhn RJ, Rossmann MG. Structural biology of Zika virus and other flaviviruses. Nat Struct Mol Biol. 2018 Jan;25(1):13–20. doi: https://dx.doi.org/10.1038/s41594-017-0010-8. Epub 2018 Jan 8. Review. PubMed PMID: 29323278.

  • Heimann M, Roman-Sosa G, Martoglio B, Thiel HJ, Rümenapf T. Core protein of pestiviruses is processed at the C terminus by signal peptide peptidase. J Virol 2006 Feb;80(4):1915–21. PubMed PMID: 16439547; PubMed Central PMCID: PMC1367156.

    Google Scholar 

  • Hershkovitz, O.; Zilka, A.; Bar-Ilan, A.; Abutbul, S.; Davidson, A.; Mazzon, M.; Kümmerer, B. M.; Monsoengo, A.; Jacobs, M.; Porgador, A. Dengue virus replicon expressing the nonstructural proteins suffices to enhance membrane expression of HLA class I and inhibit lysis by human NK cells. In: J. Virol. 82 (2008) S. 7666–7676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hundt J, Li Z, Liu Q. Post-translational modifications of hepatitis C viral proteins and their biological significance. World J Gastroenterol. 2013 Dec 21;19(47):8929–39. doi: https://dx.doi.org/10.3748/wjg.v19.i47.8929. Review. PubMed PMID: 24379618; PubMed Central PMCID: PMC3870546.

  • Iqbal, M.; Poole, E.; Goodbourn, S.; McCauley, J. W. Role for bovine viral diarrhea virus Erns glycoprotein in the control of activation of beta interferon by double-stranded RNA. In: J. Virol. 78 (2004) S. 136–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, S.; Eichenmüller, M.; Donhauser, N.; Neipel, F.; Engel, A. M.; Hess, G.; Fleckenstein, B.; Reil, H. HIV entry inhibition by the envelope 2 glycoprotein of GB virus C. In: AIDS 21 (2007) S. 645–647.

    Article  CAS  PubMed  Google Scholar 

  • Kindberg, E.; Mickiene, A.; Ax, C.; Akerlind, B.; Vene, S.; Lindquist, L.; Lundkvist, A.; Svensson, L. A deletion in the chemokine receptor 5 (CCR5) gene is associated with tickborne encephalitis. In: J. Infect. Dis. 197 (2008) S. 266–269.

    Article  CAS  PubMed  Google Scholar 

  • Kroschewski, H.; Allison, S. L.; Heinz, F. X.; Mandl, C. W. Role of heparan sulfate for attachment and entry of tick-borne encephalitis virus. In: Virology 308 (2003) S. 92–100.

    Article  CAS  PubMed  Google Scholar 

  • Lai, C.Y.; Tsai, W. Y.; Lin, S. R.; Kao, C. L.; Hu, H. P.; King, C. C.; Wu, H. C.; Chang, G. J.; Wang, W. K. Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. In: J. Virol. 82 (2008) S. 6631–6643.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee I, Bos S, Li G, Wang S, Gadea G, Desprès P, Zhao RY. Probing Molecular Insights into Zika Virus-Host Interactions. Viruses. 2018 May 2;10(5). pii: E233. doi: https://dx.doi.org/10.3390/v10050233. Review. PubMed PMID: 29724036.

  • Lei, H. Y.; Yeh, T. M.; Lin, H. S.; Lin, Y. S.; Chen, S. H.; Lin, C. C. Immunopathogenesis of dengue virus infection. In: J. Biomed. Sci. 8 (2001) S. 377–388.

    Article  CAS  PubMed  Google Scholar 

  • Leung, J. Y.; Pijlman, G. P.; Kondratieva, N.; Hyde, J.; Mackenzie, J. M.; Khromykh, A. A. Role of nonstructural protein NS2A in flavivirus assembly. In: J. Virol. 82 (2008) S. 4731–4741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim, J. K.; Glass, W. G.; McDermott, D. H.; Murphy, P. M. CCR5: no longer a „good for nothing“ gene–chemokine control of West Nile virus infection. In: Trends Immunol. 27 (2006) S. 308–312.

    Article  CAS  PubMed  Google Scholar 

  • Lin, R. J.; Chang, B. L.; Yu, H. P.; Liao, C. L.; Lin, Y. L. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. In: J. Virol. 80 (2006) S. 5908–5918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindenbach BD, Rice CM. The ins and outs of hepatitis C virus entry and assembly. Nat Rev Microbiol. 2013 Oct;11(10):688–700. doi: https://dx.doi.org/10.1038/nrmicro3098. Epub 2013 Sep 10. Review. PubMed PMID: 24018384; PubMed Central PMCID: PMC3897199.

  • Liu, W. J.; Wang, X. J.; Clark, D. C.; Lobigs, M.; Hall, R. A.; Khromykh, A. A. A single amino acid substitution in the West Nile virus nonstructural protein NS2A disables its ability to inhibit alpha/beta interferon induction and attenuates virus virulence in mice. In: J. Virol. 80 (2006) S. 2396–2404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mansfield, K. L.; Johnson, N.; Phipps, L. P.; Stephenson, J. R.; Fooks, A. R.; Solomon, T. Tick-borne encephalitis virus – a review of an emerging zoonosis. In: J. Gen. Virol. 90 (2009) S. 1781–1794.

    Article  CAS  PubMed  Google Scholar 

  • Melian EB, Hall-Mendelin S, Du F, Owens N, Bosco-Lauth AM, Nagasaki T, Rudd S, Brault AC, Bowen RA, Hall RA, van den Hurk AF, Khromykh AA. Programmed ribosomal frameshift alters expression of west nile virus genes and facilitates virus replication in birds and mosquitoes. PLoS Pathog. 2014 Nov 6;10(11):e1004447. doi: https://dx.doi.org/10.1371/journal.ppat.1004447. eCollection 2014 Nov. PubMed PMID: 25375107; PubMed Central PMCID: PMC4223154.

    Article  PubMed  PubMed Central  Google Scholar 

  • Melian EB, Hinzman E, Nagasaki T, Firth AE, Wills NM, Nouwens AS, Blitvich BJ, Leung J, Funk A, Atkins JF, Hall R, Khromykh AA. NS1' of flaviviruses in the Japanese encephalitis virus serogroup is a product of ribosomal frameshifting and plays a role in viral neuroinvasiveness. J Virol. 2010 Feb;84(3):1641–7. doi: https://dx.doi.org/10.1128/JVI.01979-09. Epub 2009 Nov 11. PubMed PMID: 19906906; PubMed Central PMCID: PMC2812330.

  • Miao Z, Gao L, Song Y, Yang M, Zhang M, Lou J, Zhao Y, Wang X, Feng Y, Dong X, **a X. Prevalence and Clinical Impact of Human Pegivirus-1 Infection in HIV-1-Infected Individuals in Yunnan, China. Viruses. 2017 Feb 15;9(2). pii: E28. doi: https://dx.doi.org/10.3390/v9020028. PubMed PMID: 28212298; PubMed Central PMCID: PMC5332947.

  • Michel F, Sieg M, Fischer D, Keller M, Eiden M, Reuschel M, Schmidt V, Schwehn R, Rinder M, Urbaniak S, Müller K, Schmoock M, Lühken R, Wysocki P, Fast C, Lierz M, Korbel R, Vahlenkamp TW, Groschup MH, Ziegler U. Evidence for West Nile Virus and Usutu Virus Infections in Wild and Resident Birds in Germany, 2017 and 2018. Viruses. 2019 Jul 23;11(7). pii: E674. doi: https://dx.doi.org/10.3390/v11070674. PubMed PMID: 31340516; PubMed Central PMCID: PMC6669720.

  • Ng WC, Soto-Acosta R, Bradrick SS, Garcia-Blanco MA, Ooi EE. The 5' and 3' Untranslated Regions of the Flaviviral Genome. Viruses. 2017 Jun 6;9(6). pii: E137. doi: https://dx.doi.org/10.3390/v9060137. Review. PubMed PMID: 28587300; PubMed Central PMCID: PMC5490814.

  • Pardigon, N. The biology of chikungunya: a brief review of what we still do not know. In: Pathol. Biol. (Paris) 57 (2009) S. 127–132.

    Article  CAS  Google Scholar 

  • Pfleiderer, C.; Blümel, J.; Schmidt, M.; Roth, W. K.; Houfar, M. K.; Eckert, J.; Chudy, M.; Menichetti, E.; Lechner, S.; Nübling, C. M. West Nile virus and blood product safety in Germany. In: J. Med. Virol. 80 (2008) S. 557–563.

    Article  PubMed  Google Scholar 

  • Pierson, T. C.; Diamond, M. S. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. In: Expert Rev. Mol. Med. 10 (2008) e12.

    Google Scholar 

  • Pileri, P.; Uematsu, Y.; Campagnoli, S.; Galli, G.; Falugi, F.; Petracca, R.; Weiner, A. J.; Houghton, M.; Rosa, D.; Grandi, G.; Abrignani, S. Binding of Hepatitis C Virus to CD81. In: Science 282 (1998) S. 938–941.

    Article  CAS  PubMed  Google Scholar 

  • Pompon J, Manuel M, Ng GK, Wong B, Shan C, Manokaran G, Soto-Acosta R, Bradrick SS, Ooi EE, Missé D, Shi PY, Garcia-Blanco MA. Dengue subgenomic flaviviral RNA disrupts immunity in mosquito salivary glands to increase virus transmission. PLoS Pathog. 2017 Jul 28;13(7):e1006535. doi: https://dx.doi.org/10.1371/journal.ppat.1006535. eCollection 2017 Jul. PubMed PMID: 28753642; PubMed Central PMCID: PMC5555716.

  • Pène V, Hernandez C, Vauloup-Fellous C, Garaud-Aunis J, Rosenberg AR. Sequential processing of hepatitis C virus core protein by host cell signal peptidase and signal peptide peptidase: a reassessment. J Viral Hepat. 2009 Oct;16(10):705–15. doi: https://dx.doi.org/10.1111/j.1365-2893.2009.01118.x. Epub 2009 Mar 5. PubMed PMID: 19281487.

  • Reshetnyak, V. I.; Karlovich, T. I.; Ilchenko, L. U. Hepatitis G virus. In: World J. Gastroenterol. 14 (2008) S. 4725–4734.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rey, F. A.; Heinz, F. X.; Mandl, C.; Kunz, C.; Harrison, S. C. The envelope glycoprotein from tick-borne encephalitis virus at 2Å resolution. In: Nature 375 (1995) S. 291–299.

    Article  CAS  PubMed  Google Scholar 

  • Roby JA, Setoh YX, Hall RA, Khromykh AA. Post-translational regulation and modifications of flavivirus structural proteins. J Gen Virol. 2015 Jul;96(Pt 7):1551–69. doi: https://dx.doi.org/10.1099/vir.0.000097. Epub 2015 Feb 23. Review. PubMed PMID: 25711963.

  • Roesch F, Fajardo A, Moratorio G, Vignuzzi M. Usutu Virus: An Arbovirus on the Rise. Viruses. 2019 Jul 12;11(7). pii: E640. doi: https://dx.doi.org/10.3390/v11070640. Review. PubMed PMID: 31336826; PubMed Central PMCID: PMC6669749.

  • Rümenapf, T.; Thiel, H.-J. Molecular Biology of Pestiviruses. In: Mettenleiter, T. C.; Sobrino, F. (Hrsg.) Animal viruses. ORT (Molecular Biology. Caister Academic Press) 2008. S. 39–96.

    Google Scholar 

  • Smith DB, Meyers G, Bukh J, Gould EA, Monath T, Scott Muerhoff A, Pletnev A, Rico-Hesse R, Stapleton JT, Simmonds P, Becher P. Proposed revision to the taxonomy of the genus Pestivirus, family Flaviviridae. J Gen Virol. 2017 Aug;98(8):2106-2112. doi: https://dx.doi.org/10.1099/jgv.0.000873. Epub 2017 Aug 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon, T. Flavivirus encephalitis. In: N. Engl. J. Med. 351 (2004) S. 370–378.

    Article  CAS  PubMed  Google Scholar 

  • Tautz, N.; Elbers, K.; Stoll, D.; Meyers, G.; Thiel, H.-J. Serin protease of pestivirus: Determination of cleavage sites. In: J. Virol. 71 (1997) S. 5415–5422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tautz N, Tews BA, Meyers G. The Molecular Biology of Pestiviruses. Adv Virus Res. 2015;93:47–160. doi: https://dx.doi.org/10.1016/bs.aivir.2015.03.002. Epub 2015 Apr 29. Review. PubMed PMID: 26111586.

  • Timm, J.; Roggendorf, M. Sequence diversity of hepatitis C virus: implications for immune control and therapy. In: World J. Gastroenterol. 13 (2007) S. 4808–4817.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, D. J.; Morse, D. L. West-Nile-Virus: Detection, Surveillance and Control. In: Am. N.Y. Acad. Sci. 951 (2001) S. 1–374.

    Google Scholar 

  • Wilson, J. R.; de Sessions, P. F.; Leon, M. A.; Scholle, F. West Nile virus nonstructural protein 1 inhibits TLR3 signal transduction. In: J. Virol. 82 (2008) S. 8262–8271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y.; Ray, D.; Zhao.; Y, Dong.; H, Ren.; S, Li.; Z, Guo.; Y, Bernard, K. A.; Shi, P. Y.; Li, H. Structure and function of flavivirus NS5 methyltransferase. In: J. Virol. 81 (2007) S. 3891–3903.

    Google Scholar 

Abschnitt 14.6

  • Backovic M, Rey FA. Virus entry: old viruses, new receptors. Curr Opin Virol. 2012 Feb;2(1):4–13. doi: https://dx.doi.org/10.1016/j.coviro.2011.12.005. Epub 2012 Jan 2. Review. PubMed PMID: 22440960.

  • Banatvala, J. E.; Brown, D. W. Rubella. In: Lancet 363 (2004) S. 1127–1137.

    Article  CAS  PubMed  Google Scholar 

  • Cong H, Jiang Y, Tien P. Identification of the myelin oligodendrocyte glycoprotein as a cellular receptor for rubella virus. J Virol. 2011 Nov;85(21):11038–47. doi: https://dx.doi.org/10.1128/JVI.05398-11. Epub 2011 Aug 31. PubMed PMID: 21880773; PubMed Central PMCID: PMC3194935.

  • Fontana, J.; Tzeng, W. P.; Calderita, G.; Fraile-Ramos, A.; Frey, T. K.; Risco, C. Novel replication complex architecture in rubella replicon-transfected cells. In: Cell Microbiol. 9 (2007) S. 875–890.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, M. E.; Carrasco, L. Viroporins. In: FEBS Lett. 552 (2003) S. 28–34.

    Article  CAS  PubMed  Google Scholar 

  • Ilkow CS, Willows SD, Hobman TC. Rubella virus capsid protein: a small protein with big functions. Future Microbiol. 2010 Apr;5(4):571–84. doi: https://dx.doi.org/10.2217/fmb.10.27. Review. PubMed PMID: 20353299.

  • Law, L. M.; Everitt, J. C.; Beatch, M. D.; Holmes, C. F.; Hobman, T. C. Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. In: J. Virol. 77 (2003) S. 1764–1771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X.; Yang, J.; Ghazi, A. M.; Frey, T. K. Characterization of the Zinc Binding acitvity of the Rubella Virus nonstructural protease. In: J. Virol. 74 (2000) S. 5949–5956.

    Article  Google Scholar 

  • Mangala Prasad V, Willows SD, Fokine A, Battisti AJ, Sun S, Plevka P, Hobman TC, Rossmann MG. Rubella virus capsid protein structure and its role in virus assembly and infection. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20105–10. doi: https://dx.doi.org/10.1073/pnas.1316681110. Epub 2013 Nov 26. PubMed PMID: 24282305; PubMed Central PMCID: PMC3864302.

  • Santibanez S, Hübschen JM, Ben Mamou MC, Muscat M, Brown KE, Myers R, Donoso Mantke O, Zeichhardt H, Brockmann D, Shulga SV, Muller CP, O'Connor PM, Mulders MN, Mankertz A. Molecular surveillance of measles and rubella in the WHO European Region: new challenges in the elimination phase. Clin Microbiol Infect. 2017 Aug;23(8):516–523. doi: https://dx.doi.org/10.1016/j.cmi.2017.06.030. Epub 2017 Jul 14. Review. PubMed PMID: 28712666.

  • Schwartz O, Albert ML. Biology and pathogenesis of chikungunya virus. Nat Rev Microbiol. 2010 Jul;8(7):491–500. doi: https://dx.doi.org/10.1038/nrmicro2368. Review. PubMed PMID: 20551973.

  • Zhou, Y.; Tzeng, W. P.; Yang, W.; Zhou, Y.; Ye, Y.; Lee, H. W.; Frey, T. K.; Yang, J. Identification of a Ca2+-binding domain in the rubella virus non-structural protease. In: J. Virol. 81 (2007) S. 7517–7528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou, Y.; Ushijima, H.; Frey, T. K. Genomic analysis of diverse rubella virus genotypes. In: J. Gen. Virol. 88 (2007) S. 932–941.

    Article  CAS  PubMed  Google Scholar 

Abschnitt 14.7

  • Abu Bakar F, Ng LFP. Nonstructural Proteins of Alphavirus-Potential Targets for Drug Development. Viruses. 2018 Feb 9;10(2). pii: E71. doi: https://dx.doi.org/10.3390/v10020071. Review. PubMed PMID: 29425115; PubMed Central PMCID: PMC5850378.

  • Angelini, R.; Finarelli, A. C.; Angelini, P.; Po, C.; Petropulacos, K.; Silvi, G.; Macini, P.; Fortuna, C.; Venturi, G.; Magurano, F.; Fiorentini, C.; Marchi, A.; Benedetti, E.; Bucci, P.; Boros, S.; Romi, R.; Majori, G.; Ciufolini, M. G.; Nicoletti, L.; Rezza, G.; Cassone, A. Chikungunya in north-eastern Italy: a summing up of the outbreak. In: Euro. Surveill. 12 (2007) 071122.2.

    Google Scholar 

  • Bautista-Reyes E, Núñez-Avellaneda D, Alonso-Palomares LA, Salazar MI. Chikungunya: Molecular Aspects, Clinical Outcomes and Pathogenesis. Rev Invest Clin. 2017 Nov-Dec;69(6):299–307. doi: https://dx.doi.org/10.24875/RIC.17002029. PubMed PMID: 29265115.

  • Chen R, Mukhopadhyay S, Merits A, Bolling B, Nasar F, Coffey LL, Powers A, Weaver SC, Ictv Report Consortium. ICTV Virus Taxonomy Profile: Togaviridae. J Gen Virol. 2018 Jun;99(6):761–762. doi: https://dx.doi.org/10.1099/jgv.0.001072. Epub 2018 May 10. PubMed PMID: 29745869.

  • Chevillon, C.; Briant, L.; Renaud, F.; Devaux, C. The Chikungunya threat: an ecological and evolutionary perspective. In: Trends Microbiol. 16 (2008) S. 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Forrester NL, Wertheim JO, Dugan VG, Auguste AJ, Lin D, Adams AP, Chen R, Gorchakov R, Leal G, Estrada-Franco JG, Pandya J, Halpin RA, Hari K, Jain R, Stockwell TB, Das SR, Wentworth DE, Smith MD, Kosakovsky Pond SL, Weaver SC. Evolution and spread of Venezuelan equine encephalitis complex alphavirus in the Americas. PLoS Negl Trop Dis. 2017 Aug 3;11(8):e0005693. doi: https://dx.doi.org/10.1371/journal.pntd.0005693. eCollection 2017 Aug. PubMed PMID: 28771475; PubMed Central PMCID: PMC5557581

  • Fros JJ, Pijlman GP. Alphavirus Infection: Host Cell Shut-Off and Inhibition of Antiviral Responses. Viruses. 2016 Jun 11;8(6). pii: E166. doi: https://dx.doi.org/10.3390/v8060166. Review. PubMed PMID: 27294951; PubMed Central PMCID: PMC4926186.

  • Ganesan VK, Duan B, Reid SP. Chikungunya Virus: Pathophysiology, Mechanism, and Modeling. Viruses. 2017 Dec 1;9(12). pii: E368. doi: https://dx.doi.org/10.3390/v9120368. Review. PubMed PMID: 29194359; PubMed Central PMCID: PMC5744143.

  • Gould, E. A.; Coutard, B.; Malet, H.; Morin, B.; Jamal, S.; Weaver, S.; Gorbalenya, A.; Moureau, G.; Baronti, C.; Delogu, I.; Forrester, N.; Khasnatinov, M.; Gritsun, T.; de Lamballerie, X.; Canard, B. Understanding the alphaviruses: Recent research on important emerging pathogens and progress towards their control. In: Antiviral Res. (2009) doi: https://dx.doi.org/10.1016/j.antiviral.2009.07.007.

  • Greene, I. P.; Paessler, S.; Austgen, L.; Anishchenko, M.; Brault, A. C.; Bowen, R. A.; Weaver, S. C. Envelope glycoprotein mutations mediate equine amplification and virulence of epizootic venezuelan equine encephalitis virus. In: J. Virol. 79 (2005) S. 9128–9133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiiver, K.; Tagen, I.; Zusinaite, E.; Tamberg, N.; Fazakerley, J. K.; Merits, A. Properties of non-structural protein 1 of Semliki Forest virus and its interference with virus replication. In: J. Gen. Virol. 89 (2008) S. 1457–1466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leung JY, Ng MM, Chu JJ. Replication of alphaviruses: a review on the entry process of alphaviruses into cells. Adv Virol. 2011;2011:249640. doi: https://dx.doi.org/10.1155/2011/249640. Epub 2011 Jul 2. PubMed PMID: 22312336; PubMed Central PMCID: PMC3265296.

  • Melton, J. V.; Ewart, G. D.; Weir, R. C.; Board, P. G.; Lee, E.; Gage, P. W. Alphavirus 6K proteins form ion channels. In: J. Biol. Chem. 277 (2002) S. 46923–46931.

    Article  CAS  PubMed  Google Scholar 

  • Moller-Tank S, Maury W. Phosphatidylserine receptors: enhancers of enveloped virus entry and infection. Virology. 2014 Nov;468–470:565–580. doi: https://dx.doi.org/10.1016/j.virol.2014.09.009. Epub 2014 Sep 29. Review. PubMed PMID: 25277499; PubMed Central PMCID: PMC4252826.

  • Pietilä MK, Hellström K, Ahola T. Alphavirus polymerase and RNA replication. Virus Res. 2017 Apr 15;234:44–57. doi: https://dx.doi.org/10.1016/j.virusres.2017.01.007. Epub 2017 Jan 16. Review. PubMed PMID: 28104453.

  • Powers, A. M.; Brault, A. C.; Shirako, Y.; Strauss, E. G.; Kang, W.; Strauss, J. H.; Weaver, C. Evolutionary relationships and systematics of the alphaviruses. In: J. Virol. 75 (2001) S. 10118–10131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers, A. M.; Logue, C. H. Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. In: J. Gen. Virol. 88 (2007) S. 2363–2377.

    Article  CAS  PubMed  Google Scholar 

  • Ramsey J, Mukhopadhyay S. Disentangling the Frames, the State of Research on the Alphavirus 6K and TF Proteins. Viruses. 2017 Aug 18;9(8). pii: E228. doi: https://dx.doi.org/10.3390/v9080228. Review. PubMed PMID: 28820485; PubMed Central PMCID: PMC5580485.

  • Rezza G, Chen R, Weaver SC. O'nyong-nyong fever: a neglected mosquito-borne viral disease. Pathog Glob Health. 2017 Sep;111(6):271–275. doi: https://dx.doi.org/10.1080/20477724.2017.1355431. Epub 2017 Aug 22. Review. PubMed PMID: 28829253; PubMed Central PMCID: PMC5694854.

  • Sharma A, Knollmann-Ritschel B. Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development. Viruses. 2019 Feb 18;11(2). pii: E164. doi: https://dx.doi.org/10.3390/v11020164. Review. PubMed PMID: 30781656; PubMed Central PMCID: PMC6410161.

  • Snyder JE, Kulcsar KA, Schultz KL, Riley CP, Neary JT, Marr S, Jose J, Griffin DE, Kuhn RJ. Functional characterization of the alphavirus TF protein. J Virol. 2013 Aug;87(15):8511–23. doi: https://dx.doi.org/10.1128/JVI.00449-13. Epub 2013 May 29. PubMed PMID: 23720714; PubMed Central PMCID: PMC3719798.

  • Soghigian J, Andreadis TG, Molaei G. Population genomics of Culiseta melanura, the principal vector of Eastern equine encephalitis virus in the United States. PLoS Negl Trop Dis. 2018 Aug 17;12(8):e0006698. doi: https://dx.doi.org/10.1371/journal.pntd.0006698. eCollection 2018 Aug. PubMed PMID: 30118494; PubMed Central PMCID: PMC6114928.

  • Spuul, P.; Salonen, A.; Merits, A.; Jokitalo, E.; Kääriäinen, L.; Ahola, T. Role of the amphipathic peptide of Semliki forest virus replicase protein nsP1 in membrane association and virus replication. In: J. Virol. 81 (2007) S. 872–883.

    Article  CAS  PubMed  Google Scholar 

  • Zusinaite, E.; Tints, K.; Kiiver, K.; Spuul, P.; Karo-Astover, L.; Merits, A.; Sarand, I. Mutations at the palmitoylation site of non-structural protein nsP1 of Semliki Forest virus attenuate virus replication and cause accumulation of compensatory mutations. In: J. Gen. Virol. 88 (2007) S. 1977–1985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Abschnitt 14.8

  • Balasriya, U. B. R.; Snijder, E. J. Arteriviruses. In: Mettenleiter, T. C.; Sobrino, F. (Hrsg.) Animal viruses. 2008 (Molecular Biology. Caister Academic Press) S. 97–148.

    Google Scholar 

  • Balasuriya UB, Carossino M. Reproductive effects of arteriviruses: equine arteritis virus and porcine reproductive and respiratory syndrome virus infections. Curr Opin Virol. 2017 Dec;27:57–70. doi: https://dx.doi.org/10.1016/j.coviro.2017.11.005. Epub 2017 Nov 21. Review. PubMed PMID: 29172072.

  • Blanck S, Stinn A, Tsiklauri L, Zirkel F, Junglen S, Ziebuhr J. Characterization of an alphamesonivirus 3C-like protease defines a special group of nidovirus main proteases. J Virol. 2014 Dec;88(23):13747–58. doi: https://dx.doi.org/10.1128/JVI.02040-14. Epub 2014 Sep 17. PubMed PMID: 25231310; PubMed Central PMCID: PMC4248970.

  • Calvert, J. G.; Slade, D. E.; Shields, S. L.; Jolie, R.; Mannan, R. M.; Ankenbauer, R. G.; Welch, S. K. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. In: J. Virol. 81 (2007) S. 7371–7379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cong Y, Verlhac P, Reggiori F. The Interaction between Nidovirales and Autophagy Components. Viruses. 2017 Jul 11;9(7). pii: E182. doi: https://dx.doi.org/10.3390/v9070182. Review. PubMed PMID: 28696396; PubMed Central PMCID: PMC5537674.

  • Delputte, P. L.; Van Breedam, W.; Delrue, I.; Oetke, C.; Crocker, P. R.; Nauwynck, H. J. Porcine arterivirus attachment to the macrophage-specific receptor sialoadhesin is dependent on the sialic acid-binding activity of the N-terminal immunoglobulin domain of sialoadhesin. In: J. Virol. 81 (2007) S. 9546–9550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Z, Chen XX, Li R, Qiao S, Zhang G. The prevalent status and genetic diversity of porcine reproductive and respiratory syndrome virus in China: amolecular epidemiological perspective. Virol J. 2018 Jan 4;15(1):2. doi: https://dx.doi.org/10.1186/s12985-017-0910-6. Review. PubMed PMID: 29301547; PubMed Central PMCID:PMC5753475

  • Lee, C.; Yoo. D. The small envelope protein of porcine reproductive and respiratory syndrome virus possesses ion channel protein-like properties. In: Virology 355 (2006) S. 30–43.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shang P, Shyu D, Carrillo C, Naraghi-Arani P, Jaing CJ, Renukaradhya GJ, Firth AE, Snijder EJ, Fang Y. Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses. Virology. 2018 Apr;517:164–176. doi: https://dx.doi.org/10.1016/j.virol.2017.12.017. Epub 2018 Jan 8. PubMed PMID: 29325778; PubMed Central PMCID: PMC5884420.

  • MacLachlan, N. J.; Balasuriya, U. B. Equine viral arteritis. In: Adv. Exp. Med. Biol. 581 (2006) S. 429–433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posthuma, C. C.; Nedialkova, D. D.; Zevenhoven-Dobbe, J. C.; Blokhuis, J. H.; Gorbalenya, A. E.; Snijder, E. J. Site-directed mutagenesis of the Nidovirus replicative endoribonuclease NendoU exerts pleiotropic effects on the arterivirus life cycle. In: J. Virol. 80 (2006) S. 1653–1661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Posthuma CC, Te Velthuis AJW, Snijder EJ. Nidovirus RNA polymerases: Complex enzymes handling exceptional RNA genomes. Virus Res. 2017 Apr 15;234:58–73. doi: https://dx.doi.org/10.1016/j.virusres.2017.01.023. Epub 2017 Feb 6. Review. PubMed PMID: 28174054.

  • Snijder EJ, Kikkert M, Fang Y. Arterivirus molecular biology and pathogenesis. J Gen Virol. 2013 Oct;94(Pt 10):2141–63. doi: https://dx.doi.org/10.1099/vir.0.056341-0. Epub 2013 Aug 12. Review. PubMed PMID: 23939974.

  • Ulferts R, Ziebuhr J. Nidovirus ribonucleases: Structures and functions in viral replication. RNA Biol. 2011 Mar-Apr;8(2):295–304. Epub 2011 Mar 1. Review. PubMed PMID: 21422822.

    Google Scholar 

  • Zhang M, Li X, Deng Z, Chen Z, Liu Y, Gao Y, Wu W, Chen Z. Structural Biology of the Arterivirus nsp11 Endoribonucleases. J Virol. 2016 Dec 16;91(1). pii: e01309–16. Print 2017 Jan 1. PubMed PMID: 27795409; PubMed Central PMCID: PMC5165224.

    Google Scholar 

  • Ziebuhr, J.; Snijder, E. J.; Gorbalenya, A. E. Virus-encoded proteinases and proteolytic processing in the Nidovirales. In: J. Gen. Virol. 81 (2000) S. 853–879.

    Article  CAS  PubMed  Google Scholar 

  • van der Hoeven B, Oudshoorn D, Koster AJ, Snijder EJ, Kikkert M, Bárcena M. Biogenesis and architecture of arterivirus replication organelles. Virus Res. 2016 Jul 15;220:70–90. doi: https://dx.doi.org/10.1016/j.virusres.2016.04.001. Epub 2016 Apr 9. Review. PubMed PMID: 27071852.

Abschnitt 14.9

  • Almendros A, Gascoigne E. Can companion animals become infected with Covid-19?. Vet Rec. 2020;186(13):419–420. doi: https://dx.doi.org/10.1136/vr.m1322

    Article  PubMed  Google Scholar 

  • Brian, D. A.; Baric, R. S. Coronavirus genome structure and replication. In: Curr. Top. Microbiol. Immunol. 287 (2005) S. 1–30.

    CAS  PubMed  Google Scholar 

  • Canton J, Fehr AR, Fernandez-Delgado R, Gutierrez-Alvarez FJ, Sanchez-Aparicio MT, García-Sastre A, Perlman S, Enjuanes L, Sola I. MERS-CoV 4b protein interferes with the NF-κB-dependent innate immune response during infection. PLoS Pathog. 2018 Jan 25;14(1):e1006838. doi: https://dx.doi.org/10.1371/journal.ppat.1006838. eCollection 2018 Jan. PubMed PMID: 29370303; PubMed Central PMCID: PMC5800688.

  • Cheng, V. C.; Lau, S. K.; Woo, P. C.; Yuen, K. Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. In: Clin. Microbiol. Rev. 20 (2007) S. 660–694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clementz, M. A.; Kanjanahaluethai, A.; O’Brien, T. E.; Baker, S. C. Mutation in murine coronavirus replication protein nsp4 alters assembly of double membrane vesicles. In: Virology 375 (2008) S. 118–129.

    Article  CAS  PubMed  Google Scholar 

  • Cornillez-Ty, C. T.; Liao, L.; Yates, J. R. 3rd.; Kuhn, P.; Buchmeier, M. J. SARS Coronavirus nonstructural protein 2 interacts with a host protein complex involved in mitochondrial biogenesis and intracellular signaling. In: J. Virol. 83 (2009) S. 10314–10318

    Google Scholar 

  • Deming, D. J.; Graham, R. L.; Denison, M. R.; Baric, R. S. Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. In: J. Virol. 81 (2007) S. 10280–10291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diemer, C.; Schneider, M.; Seebach, J.; Quaas, J.; Frösner, G.; Schätzl, H. M.; Gilch, S. Cell type-specific cleavage of nucleocapsid protein by effector caspases during SARS coronavirus infection. In: J. Mol. Biol. 376 (2008) S. 23–34.

    Article  CAS  PubMed  Google Scholar 

  • Drexler JF, Corman VM, Drosten C. Ecology, evolution and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014 Jan;101:45–56. doi: https://dx.doi.org/10.1016/j.antiviral.2013.10.013. Epub 2013 Oct 31. Review. PubMed PMID: 24184128.

  • Drosten, C.; Günher S.; Preiser, W.; van der Werf, S.; Brodt, H. R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R. A. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. In: N. Engl. J. Med. 348 (2003) S. 1967–1976.

    Article  CAS  PubMed  Google Scholar 

  • Enjuanes, L.; Almazán, F.; Sola, I.; Zuñiga, S. Biochemical aspects of coronavirus replication and virus-host interaction. In: Annu. Rev. Microbiol. 60 (2006) S. 211–230.

    Article  CAS  PubMed  Google Scholar 

  • Goldstein SA, Weiss SR. Origins and pathogenesis of Middle East respiratory syndrome-associated coronavirus: recent advances. F1000Res. 2017 Sep 1;6:1628. doi: https://dx.doi.org/10.12688/f1000research.11827.1. eCollection 2017. Review. PubMed PMID: 29026532; PubMed Central PMCID: PMC5583735.

  • Guo, Y.; Korteweg, C.; McNutt, M. A.; Gu, J. Pathogenetic mechanisms of severe acute respiratory syndrome. In: Virus Res. 133 (2008) S. 4–12.

    Article  CAS  PubMed  Google Scholar 

  • van der Hoek, L. Human coronaviruses: what do they cause? In: Antivir. Ther. 12 (2007) S. 651–658.

    Article  PubMed  Google Scholar 

  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280.e8. doi:https://dx.doi.org/10.1016/j.cell.2020.02.052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofmann, H.; Pyrc, K.; van der Hoek, L.; Geier, M.; Berkhout, B.; Pöhlmann, S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. In: Proc. Natl. Acad. Sci. USA 102 (2005) S. 7988–7993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann, H.; Pöhlmann, S. Cellular entry of the SARS coronavirus. In: Trends in Microbiology 12 (2004) S. 466–472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann, H.; Simmons, G..; Rennekamp, A. J.; Chaipan, C.; Gramberg, T.; Heck, E.; Geier, M.; Wegele, A.; Marzi, A.; Bates, P.; Pöhlmann, S. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. In: J. Virol. 80 (2006) S. 8639–8652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes, E. C.; Rambaut, A. Viral evolution and the emergence of SARS coronavirus. In: Phil. Trans. R. Soc. Lond. B 359 (2004) S. 1059–1065.

    Article  CAS  Google Scholar 

  • Hui DS, Azhar EI, Kim YJ, Memish ZA, Oh MD, Zumla A. Middle East respiratory syndrome coronavirus: risk factors and determinants of primary, household, and nosocomial transmission. Lancet Infect Dis. 2018 Apr 18. pii: S1473–3099(18)30127-0. doi: https://dx.doi.org/10.1016/S1473-3099(18)30127-0. [Epub ahead of print] Review. PubMed PMID: 29680581.

  • Jaimes JA, Whittaker GR. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology. 2018 Apr;517:108–121. doi: https://dx.doi.org/10.1016/j.virol.2017.12.027. Epub 2018 Jan 10. PubMed PMID:29329682.

  • Kennedy, M.; Boedeker, N.; Gibbs, P.; Kania, S. Deletions in the 7a ORF of feline coronavirus associated with an epidemic of feline infectious peritonitis. In: Vet. Microbiol. 81 (2001) S. 227–234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ko JH, Seok H, Cho SY, Ha YE, Baek JY, Kim SH, Kim YJ, Park JK, Chung CR, Kang ES, Cho D, Müller MA, Drosten C, Kang CI, Chung DR, Song JH, Peck KR. Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: a single centre experience. Antivir Ther. 2018 Jun 20. doi: https://dx.doi.org/10.3851/IMP3243. [Epub ahead of print] PubMed PMID: 29923831.

  • Lau, Y. L.; Peiris, J. S. M. Pathogenesis of the severe acute respiratory syndrome. In: Curr. Opin. Immunol. 17 (2005) S. 404–410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lei J, Kusov Y, Hilgenfeld R. Nsp3 of coronaviruses: Structures and functions of a large multi-domain protein. Antiviral Res. 2018 Jan;149:58–74. doi: https://dx.doi.org/10.1016/j.antiviral.2017.11.001. Epub 2017 Nov 8. Review. PubMed PMID: 29128390.

  • Lu G, Wang Q, Gao GF. Bat-to-human: spike features determining ‘host jump’ of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends Microbiol. 2015 Aug;23(8):468–78. doi: https://dx.doi.org/10.1016/j.tim.2015.06.003. Epub 2015 Jul 21. Review. PubMed PMID: 26206723.

  • Menachery VD, Mitchell HD, Cockrell AS, Gralinski LE, Yount BL Jr, Graham RL, McAnarney ET, Douglas MG, Scobey T, Beall A, Dinnon K 3rd, Kocher JF, Hale AE, Stratton KG, Waters KM, Baric RS. MERS-CoV Accessory ORFs Play Key Role for Infection and Pathogenesis. MBio. 2017 Aug 22;8(4). pii: e00665–17. doi: https://dx.doi.org/10.1128/mBio.00665-17. PubMed PMID: 28830941; PubMed Central PMCID: PMC5565963.

  • Narayanan, K.; Huang, C.; Lokugamage, K.; Kamitani, W.; Ikegami, T.; Tseng, C. T.; Makino, S. Severe acute respiratory syndrome coronavirus nsp1 suppresses host gene expression, including that of type I interferon, in infected cells. In: J. Virol. 82 (2008) S. 4471–4479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narayanan, K.; Huang, C.; Makino, S. SARS coronavirus accessory proteins. In: Virus Res. 133(2008) S. 113–121.

    Article  CAS  PubMed  Google Scholar 

  • Narayanan K, Ramirez SI, Lokugamage KG, Makino S. Coronavirus nonstructural protein 1: Common and distinct functions in the regulation of host and viral gene expression. Virus Res. 2015 Apr 16;202:89–100. doi: https://dx.doi.org/10.1016/j.virusres.2014.11.019. Epub 2014 Nov 26. Review. PubMed PMID: 25432065; PubMed Central PMCID: PMC4444399.

  • Okba NM, Raj VS, Haagmans BL. Middle East respiratory syndrome coronavirus vaccines: current status and novel approaches. Curr Opin Virol. 2017 Apr;23:49–58. doi: https://dx.doi.org/10.1016/j.coviro.2017.03.007. Epub 2017 Apr 13. Review. PubMed PMID: 28412285.

  • Pasternak, A. O.; Spaan, W. J.; Snijder, E. J. Nidovirus transcription: how to make sense …? In: J. Gen. Virol. 87 (2006) S. 1403–1421.

    Article  CAS  PubMed  Google Scholar 

  • Perlman, S.; Netland, J. Coronaviruses post-SARS: update on replication and pathogenesis. In: Nat. Rev. Microbiol. 7 (2009) S. 439–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabaan AA, Bazzi AM, Al-Ahmed SH, Al-Tawfiq JA. Molecular aspects of MERS-CoV. Front Med. 2017 Sep;11(3):365–377. doi: https://dx.doi.org/10.1007/s11684-017-0521-z. Epub 2017 May 13. Review. PubMed PMID: 28500431.

  • Shang J, Ye G, Shi K, et al. Structural basis of receptor recognition by SARS-CoV-2 [published online ahead of print, 2020 Mar 30]. Nature. 2020; https://dx.doi.org/10.1038/s41586-020-2179-y. doi: https://dx.doi.org/10.1038/s41586-020-2179-y

  • Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013 Dec;100(3):605–14. doi: https://dx.doi.org/10.1016/j.antiviral.2013.09.028. Epub 2013 Oct 8. Review. PubMed PMID: 24121034; PubMed Central PMCID: PMC3889862.

  • Snijder EJ, Decroly E, Ziebuhr J. The Nonstructural Proteins Directing Coronavirus RNA Synthesis and Processing. Adv Virus Res. 2016;96:59–126. doi: https://dx.doi.org/10.1016/bs.aivir.2016.08.008. Epub 2016 Sep 14. Review. PubMed PMID: 27712628.

  • Sperry, S. M.; Kazi, L.; Graham, R. L.; Baric, R. S.; Weiss, S. R.; Denison, M. R. Single-amino-acid substitutions in open reading frame (ORF) 1b-nsp14 and ORF 2a proteins of the coronavirus mouse hepatitis virus are attenuating in mice. In: J. Virol. 79 (2005) S. 3391–3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stavrinides, J.; Guttman, D. S. Mosaic evolution of the severe acute respiratory syndrome coronavirus. In: J. Virol. 78 (2004) S. 76–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Subissi L, Imbert I, Ferron F, Collet A, Coutard B, Decroly E, Canard B. SARS-CoV ORF1b-encoded nonstructural proteins 12–16: replicative enzymes as antiviral targets. Antiviral Res. 2014 Jan;101:122–30. doi: https://dx.doi.org/10.1016/j.antiviral.2013.11.006. Epub 2013 Nov 20. Review. PubMed PMID: 24269475.

  • Surjit, M.; Lal, S. K. The SARS-CoV nucleocapsid protein: a protein with multifarious activities. In: Infect. Genet. Evol. 8 (2008) S. 397–405.

    Article  CAS  PubMed  Google Scholar 

  • Tekes G, Thiel HJ. Feline Coronaviruses: Pathogenesis of Feline Infectious Peritonitis. Adv Virus Res. 2016;96:193–218. doi: https://dx.doi.org/10.1016/bs.aivir.2016.08.002. Epub 2016 Aug 31. Review. PubMed PMID: 27712624.

  • Thiel, V.; Herold, J.; Schelle, B.; Siddell, S. G. Viral replicase gene products suffice for coronavirus discontinous transcription. In: J. Virol. 75 (2001) S. 6676–6681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiel, V.; Weber, F. Interferon and cytokine responses to SARS- coronavirus infection. In: Cytokine Growth Factor Rev. 19 (2008) S. 121–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tresnan, D. B.; Holmes, K. V. Feline aminopeptidase N is a receptor for all group I coronaviruses. In: Adv. Exp. Med. Biol. 440 (1998) S. 69–75.

    Article  CAS  PubMed  Google Scholar 

  • Vennema, H.; Poland, A.; Foley, J.; Pedersen, N. C. Feline infectious peritonitis viruses arise by mutation from endemic feline enteric coronaviruses. In: J. Virol. 243 (1998) S. 150–157.

    Article  CAS  Google Scholar 

  • Wang, L. F.; Eaton, B. T. Bats, civets and the emergence of SARS. In: Curr. Top. Microbiol. Immunol. 315 (2007) S. 325–344.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss SR, Leibowitz JL. Coronavirus pathogenesis. Adv Virus Res. 2011;81:85–164. doi: https://dx.doi.org/10.1016/B978-0-12-385885-6.00009-2. Review. PubMed PMID: 22094080.

  • Wong, S.; Lau, S.; Woo, P.; Yuen, K. Y. Bats as a continuing source of emerging infections in humans. In: Rev. Med. Virol. 17 (2007) S. 67–91.

    Article  PubMed  Google Scholar 

  • Wong HH, Fung TS, Fang S, Huang M, Le MT, Liu DX. Accessory proteins 8b and 8ab of severe acute respiratory syndrome coronavirus suppress the interferon signaling pathway by mediating ubiquitin-dependent rapid degradation of interferon regulatory factor 3. Virology. 2018 Feb;515:165–175. doi: https://dx.doi.org/10.1016/j.virol.2017.12.028. Epub 2017 Dec 30. PubMed PMID: 29294448.

  • You, J. H.; Reed, M. L.; Hiscox, J. A. Trafficking motifs in the SARS-coronavirus nucleocapsid protein. In: Biochem. Biophys. Res. Commun. 358 (2007) S. 1015–1020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuen KS, Ye ZW, Fung SY, Chan CP, ** DY. SARS-CoV-2 and COVID-19: The most important research questions. Cell Biosci. 2020;10:40. Published 2020 Mar 16. doi: https://dx.doi.org/10.1186/s13578-020-00404-4

  • Zhang, X.; Wu, K.; Wang, D.; Yue, X.; Song, D.; Zhu, Y.; Wu, J. Nucleocapsid protein of SARS-CoV activates interleukin-6 expression through cellular transcription factor NF-kappaB. In: Virology 365 (2007) S. 324–335.

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Wu Q, Zhang Z. Probable Pangolin Origin of SARS-CoV-2 Associated with the COVID-19 Outbreak [published correction appears in Curr Biol. 2020 Apr 20;30(8):1578]. Curr Biol. 2020;30(7):1346–1351.e2. doi: https://dx.doi.org/10.1016/j.cub.2020.03.022

  • Ziebuhr, J. Molecular biology of severe acute respirator syndrome. In: Curr. Opin. Microbiol. 7 (2004) S. 412–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Züst, R.; Cervantes-Barragán, L.; Kuri, T.; Blakqori, G.; Weber, F.; Ludewig, B.; Thiel, V. Coronavirus non-structural protein 1 is a major pathogenicity factor: implications for the rational design of coronavirus vaccines. In: PLoS Pathog. 3 (2007) e109.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Modrow .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Modrow, S., Truyen, U., Schätzl, H. (2021). Viren mit einzelsträngigem RNA-Genom in Plusstrangorientierung. In: Molekulare Virologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-61781-6_14

Download citation

Publish with us

Policies and ethics

Navigation